

UNIVERSITY OF MICHIGAN
College of Engineering

Curriculum Committee Meeting
Tuesday, January 14 – Email Vote

Email Vote

Attending:

Call to Order:

Adjourned:

AGENDA

1. 11.19.19 Meeting Minutes Approval: APPROVED

CARF SUMMARIES

PAGE

SUBJECT

COURSE #

ACTION

SUMMARY

EFFECTIVE
TERM

MIN. GRADE
REQ. FOR ENF.
PREPREQ

APPROVED

NOTES & REVISIONS

TABLED

5

ROB

502

NEW

FA 2020

X

17

ROB

511

NEW

FA 2020

-

X

104

 MECHENG

395

MOD

change to enforced prerequisites

FA 2020

C-

X

107

 MECHENG

450

MOD

change to enforced prerequisites

FA 2020

C

X

UNIVERSITY OF MICHIGAN

College of Engineering
Curriculum Committee Meeting

Tuesday, January 14 – Email Vote
Email Vote

Attending:

Call to Order:

Adjourned:

AGENDA

CARF SUMMARIES

PAGE

SUBJECT

COURSE #

ACTION

SUMMARY

EFFECTIVE
TERM

MIN. GRADE
REQ. FOR ENF.
PREPREQ

APPROVED

NOTES & REVISIONS

TABLED

2

ROB

502

NEW

FA 2020

14

ROB

511

NEW

FA 2020

-

101

 MECHENG

450

MOD

change to enforced prerequisites

FA 2020

C-

104

 MECHENG

395

MOD

change to enforced prerequisites

FA 2020

C

Subject: Robotics Catalog: 502

Grading Basis

0 Graded (A - E)

□ Credit/No Credit

□ Satisfactory/Unsatisfactory Add Consent Drop Consent

rll
□ Pass/Fail □ Department Consent □ Department Consent

□ Business Administration 0 Instructor Consent 0 Instructor Consent

Grading □ No Consent □ No Consent

□ Not for Credit

□ Not for Degree Credit

□ Degree Credit Only

CURRENT LISTING REQUESTED LISTING

□
Advisory Prerequisite (254 char) Advisory Prerequisite (254 char)

Enforced Prerequisite (254 char) Enforced Prerequisite (254 char)

□

Minimum grade requirement: Minimum grade requirement:

□
Credit Exclusions Credit Exclusions

Course Components Graded Component
Terms Typically Offered

□ Lecture □

□ Seminar □
0 Fall

rll □ Recitation □
□ Winter

0 Lab 0
□ Spring

□ Discussion □
□ Summer

□ Independent Study □
□ Spring/Summer

Cognizant Faculty Member Name: Ella Atkins & Ed Olson Cognizant Faculty Member Title: Professor

SIGNATURES ARE REQUIRED FROM ALL DEPARTMENTS INVOLVED (Please Print AND Sign Name)

Contact Person: Denise Edmund Email: dledmund@umich.edu Phone: 7-2970

Curriculum Committee Member: Print: Date:

Curriculum Committee Chair: Print: Date:

Date:

Home Department Chair: Print: Jessy Grizzle 12/13/19

Cross-Listed Department Chair. Print: Date:

Cross-Listed Department Chair: Print: Date:

Cross-Listed Department Chair: Print: Date:

DEPARTMENTAL/COLLEGE USE ONLY I

ROB 599: Programming for Robotics |
Fall 2019 | Michigan Robotics

Instructor: Acshi Haggenmiller (acshikh), PhD Candidate
Tu/We 1:30-4:30pm
1620 Bob and Betty Beyster Building (CAEN lab in the hallway to DOW)

This whole site is a living document and subject to change.

Introduction

This class is designed for engineering students who have a basic
understanding of programming but haven’t majored in computer science or
taken a dedicated sequence of programming courses. The goal of this class
is for students to learn how to 1) write programs from scratch that meet
robotic system requirements; 2) organize programs into logical sections; 3)
critique program design and implementation choices; 4) use appropriate
debugging tools and methodology to efficiently understand and correct
program behavior; and 5) use the command line to work with git and other
relevant utilities and scripts.

As it is titled Programming for Robotics, we have tried to design the in-class
problems and homework assignments to be relevant to common robotics
situations and algorithms, with the greater goal of demystifying programming
and avoiding black-box magic. To be relevant and exciting, we designed the
homework assignments around building a robotics simulation environment.
While there are many excellent libraries and tools available for this (ROS
among them), we will figure it out for ourselves! The best way to learn
programming is by programming, so there will not be any quizzes or exams,
and algorithms and necessary math will be provided so you can focus on
implementation and not derivation.

The class uses the C programming language. C is a relatively simple language
that will help us understand the fundamentals of how computer programs
works, without the language letting us take complicated features for granted.
Although most robotics programming is done in languages like Python and
C++, the fundamentals you learn in C will help you to better understand what
is happening in those more complicated languages.

Most class sessions will follow a “labture” format. We will start with a series of
segments containing a short lecture, an instructor demo, individual work on a
self-contained problem, and finally class solution evaluation. Students are
encouraged to ask each other and the instructor for help, but only students

who have finished a problem should be looking at other students’ code. In the
evaluation, we will review several anonymous solutions and talk about their
relative strengths.

Some class sessions will not have any formally scheduled instruction or
problems. Instead, topics will be addressed on an as-needed basis, with the
remaining time open for working on the homework assignments with
instructor help. The homework assignments are intended to require about 4
hours per class session. In general, they will be due 1 week after the end of the
topic section they were assigned in. For example, the first homework will be
due before class session 5.

Class Schedule

Classes 1-3: Data representation

Goals: 1) Inspect abstract data (e.g. pictures, text, plans) at the byte and
bit level, and understand how changing low-level numbers affects high-
level meaning. 2) Use the command line with git and the class
submission system to get feedback.
Class 1: Using Linux and bash
Class 2: Using git to commit and submit code; expressing logic
Class 3: Arrays, ASCII, bytes, and GDB
Homework 1: Polygonal collision detection, cryptogram
There are variety of C concepts that will not be explicitly covered in
class! We are providing a tutorial document to help explain the
necessary syntax and basic ideas so we can delve right into the good
stuff!
For an even gentler introduction to C, I highly recommend Harvard’s
CS50 lectures. Although the whole lectures can be long, they have good
tables of contents on each lecture on YouTube, and work well at 2X
playing speed. This clip focuses on compiling C, on using make, and on
common compiler errors. This one is on the compilation process.
If you want to follow along with their examples, you will need to use
their sandbox.

Classes 4-7: Memory concepts and debugging

Goals: 1) Determine when dynamic memory is appropriate and how to
prevent and detect memory leaks. 2) Determine when pointers are
necessary and reason about when they are valid. 3) Use feedback from
GDB, Valgrind, and AddressSanitizer to fix memory and other bugs.
Class 4: Addresses, pointers
Class 5: Malloc/free, debugging errors, and dynamic arrays
Class 6: Linked lists
Class 7: As needed

Homework 2: Rasterizing bitmaps, Braitenberg vehicles
This clip talks about how data is stored in memory. This one talks about
pointers. This one talks about malloc and free. This one talks about
memory addresses and hexadecimal. This one is on stack overflows.

Classes 8-10: Recursion and Search

Goals: 1) Reason about and write recursive algorithms. 2) Use search
algorithms with forward simulation to choose robot actions.
Class 8: Bisection search, midpoint method, recursion vs iteration
Class 9: Tree search
Class 10: As needed
This clip gives an overview of recursion and how the computer’s stack is
used to hold multiple versions of the same function in memory.
Homework 3: Equation parsing, robot chase

Classes 11-13: Object abstractions

Goals: 1) Analyze algorithmic complexity and determine when it matters.
2) Choose data structures based on algorithm needs. 3) Separate and
hide implementation from specification.
Class 11: Complexity/Big-O Notation
Class 12: Hash tables
Class 13: As needed
Homework 4: Bigrams

Classes 14-17: Threading

Goals: 1) Understand when threading is necessary and how to avoid
using it unnecessarily. 2) Determine when variables may be subject to
race conditions and how to prevent them. 3) Use threading for terminal
input control.
Class 14: Basic threading
Class 15: Race conditions, deadlock, mutexes
Class 16: Terminal settings, I/O threading, manual robot control
Class 17: As needed
Homework 5: Live-tuning potential fields

Classes 18-20: Message passing and networking

Goals: 1) Divide robotic systems into independent parts. 2) Coordinate
program communication across network nodes. 3) Use logging and
playback features to debug specific modules.
Class 18: LCM/ROS basics, hybrid architectures
Class 19: Networking
Class 20: As needed

Homework 6: Split project into communicating processes

Classes 21-23: Special topics

Class 21: Coding interviews
Class 22: Code reviews
Class 23: Introduction to Python

Grading

Grades will be 5% course feedback assignments, 5% participation, 30% in-
class assignments, and 60% homework assignments (evenly split between all
the homework assignments, including the final project). In-class assignments
will be 50% correctness and 50% participation (awarded for at least 50%
correctness). Assignments will report their percentage completion through the
auto-grader, with points given for completing objectives and points taken
away for things like memory errors or inconsistent style. Final grades will be
curved if necessary.

Course feedback

Several times over the semester, we will ask students to submit their
anonymous feedback on the course. As a completely new course, we want to
gauge the effectiveness of the course setup, assignments, and teaching style.

Participation

During every class session we will have some “clicker”-type question to verify
attendance. We want everyone to come to class so that you can support the
other people at your table/group. Although assignments are individual and
you shouldn’t write code for anyone else, the class will be better for everyone if
we can give advice and support and aid to each other. Also, if you get ahead of
the in-class assignments, please start working on the homework!

Late Policy

For in-class work, the two lowest scores for individual in-class assignment
problems will be dropped. If you anticipate missing a class day, you are
encouraged to complete that day’s assignments beforehand.

For homework, over all the homework assignment problems, 48 total
cumulative hours of tardiness are “free”. After this, each hour an assignment is
late (rounded up by ceiling) will reduce its maximum score by one percentage
point (so 80% completion of an assignment 10 hours late would be 80% * 90%
= 72%). The auto-grader will report these percentage calculations and keep

your highest final score from any submission. The 48 free hours of allowed
homework tardiness will be applied at the end of the semester to maximize
your final grade.

At any point, run p4r-check in a problem folder to see the highest score the
auto-grader has recorded for you.

Accessing CAEN Computers

To have a consistent development environment for all users, we will be using
the CAEN computers in our classroom space. No matter which computer you
log into, you will have access to your files. You are free to also use a personal
computer if you like, although it may or may not be as easy to setup as the
CAEN computers.

You can also access the CAEN computers remotely from your own computer
through the ssh tool:

While on campus run the following with your uniqid and enter your
password and DuoMobile 2-factor authentication:

ssh -X uniqid@oncampus-course.engin.umich.edu

When off campus, instead use:

ssh -X uniqid@login-course.engin.umich.edu

The -X option enables X11 Forwarding, which lets you open graphical
programs over ssh and have them appear on your host computer. If you
are running Windows as your host computer, you will then also need to
install an X11 server to actually manage these windows. I recommend
xming. If you don’t need to use a gui over ssh, you can omit this option.
X11 Forwarding is pretty slow, though, so I don’t recommend it for
general work.

Academic Honesty

The programs you submit, for both in-class and homework assignments, must
be your own work, and significant similarity to other submissions will be
considered highly suspect. Ultimately, though, the basic guideline is to be
reasonable.

While working on problems, you are encouraged to search the internet to
learn how to perform specific functions or techniques. In general, if you find a
trivial one-liner on StackOverflow, you do not need to cite this. If you are
copying a full algorithm, say for quicksort, you would need to cite this (or just
use the standard library function qsort!). If that algorithm is a core objective
of the assignment, however, then this would not be appropriate regardless of

citation. Especially when you implement trickier algorithms or mathematical
calculations that you found somewhere online, it can be wise to include a link
to the original description of that method in a comment. This makes it easier
to check or resume your work later.

You are especially encouraged to get help from your peers! This means that
after trying to figure out a problem or fix your code, please talk to other
students. If you want them to look at your code, make sure they have already
finished that section. Ask them for pointers about where the error is or what
concepts or techniques to review, especially debugging techniques. Keep the
conversation high-level and don’t give or receive guided instructions on
exactly what code to write. The most useful thing would be to point out flawed
logic and allow the other student to come up with the fix themselves. For
earlier brainstorming of problem solutions, discuss problems using a
whiteboard or a sheet of paper so that everyone can still write their code for
themselves. You should not show your own working code to another student
who is struggling to complete theirs.

If on the homework you get significant help from your peers, please consider
adding a comment in your code at the top of the file saying who you
collaborated with and what information was shared. This may help avoid
potential confusion in similar solutions. However, since sharing of code is not
permitted, we still expect the small details to be significantly different.

If it has been determined that students have flagrantly violated this policy, we
reserve the right to respond severely.

University of Michigan
Fall 2019 Instructor Report With Comments

ROB 599-001: Special Topics ROB
Acshi Haggenmiller

24 out of 26 students responded to this evaluation.

Responses to the University-wide questions about the course:

SA A N D SD N/A
Your

Median

University-
Wide

Median
School/College

Median

This course advanced my understanding of the subject matter.
(Q1631)

23 1 0 0 0 0 5.0 4.5 4.6

My interest in the subject has increased because of this
course.(Q1632)

19 3 1 1 0 0 4.9 4.2 4.5

I knew what was expected of me in this course.(Q1633) 14 7 3 0 0 0 4.6 4.4 4.5

Overall, this was an excellent course.(Q1) 21 3 0 0 0 0 4.9 4.2 4.5

I had a strong desire to take this course.(Q4) 15 7 2 0 0 0 4.7 4.0 4.5

As compared with other courses of equal credit, the workload
for this course was...(SA=Much Lighter to SD=Much Heavier)
(Q891)

3 0 6 13 2 0 2.3 3.0 3.0

Responses to University-wide questions about the instructor:

SA A N D SD N/A
Your

Median
University-Wide

Median
School/College

Median

Overall, Acshi Haggenmiller was an excellent teacher.
(Q2)

21 3 0 0 0 0 4.9 4.6 4.6

Acshi Haggenmiller seemed well prepared for class
meetings.(Q230)

23 0 0 0 0 0 5.0 4.8 4.8

Acshi Haggenmiller explained material clearly.(Q199) 19 5 0 0 0 0 4.9 4.6 4.6

Acshi Haggenmiller treated students with respect.
(Q217)

20 2 2 0 0 0 4.9 4.8 4.8

The medians are calculated from Fall 2019 data. University-wide medians are based on all UM classes in which an item was used.
The school/college medians in this report are based on classes that are graduate level with enrollment of 16 to 74 in College of
Engineering.

Instructor-added question:

The course covered too much material

Statistics Value

Median 3.0

Instructor-added question:

I could always get enough help on the assignments

Statistics Value

Median 4.9

Instructor-added question:

I feel prepared to take classes with significant programming
components, like ROB 550

Statistics Value

Median 4.5

Written Comments

Comment on the quality of instruction in this course.

Comments

Well. I am extremely appreciate his effort both in class and out of the lecture in terms of helping us out. He is a responsible person
and capable of knowledge to resolve the programming issues for our classmates. However, I'd like to points out one of the tiny
defect in his teaching. Cause this is a programming course and all the assignments are evaluated through auto–grader, plus he is
carrying on this course all along. I know this could be overwhelming for him. But some of his test case is trivial to me. For an
instance, there are dozens of ways to resolve a question and even different individuals can write a same algorithm in different ways.
In that case, some part of our code is functioning correct in terms of behavior. But almost a tiny difference in the coding order might
change our output in which case his auto–grader just thinks that ours are wrong. Myself have spent a lot time which is not
necessary to find out where are the differences. That part is trivial and time–wasting which do nothing good to our understanding of
programming and logic.
All in all, he is a nice person. I believe all of my classmates enjoy his lectures.

Acshi is an amazing instructor! 100% agree with and love his teaching methods. He is incredibly knowledgeable and even more
helpful. He goes above and beyond to ensure we learn, by staying extra hours, promptly replying on Piazza, holding long office
hours and more. Additionally, he designs interesting and creative hw problems that motivate me to program. Acshi's dedication to
this course is unmatchable, and he has set a very high bar for future instructors. Thank you!

Very very good, one of the best

Acshi did an outstanding job of dividing the time between lecturing and actually letting us do things. This combination is really the
kind you need to learn to “think” programmatically. Overall, I’ve not only learnt the subject material but i’ve Also learnt how to teach.

It's a very good class and Acshi always taught materials clearly. He made great web pages and those are really helpful.

Very good and thorough.
Was very patient with students during class and office hours/
Responsive in piazza.

Given Acshi is teaching for the first time, he did an excellent excellent job. He was always patient and understanding and tried to
help everyone who asked for it. Which is why it makes sense why this class size was so small.

Achshi showed a lot of effort in running this course, acting as professor and GSI. The content was well prepared.

Acshi was helpful during office hours, but sometimes his responses to questions were a bit harsh. I wish he'd started with the
assumption that I'd already given the material my best effort. Sometimes it didn't feel like this was the case. I think it would be
helpful to remember that many people in this class don't come from a strong programming background, and that we're trying our
best.

Very knowledgeable,always there to help, listens to students for feedback. Covered a variety of topics incorporated with very
interesting problem statements.

Most of the materials covered in this course are quite good. One problem is about the assignment. Admittly that it is hard to design
and produce the assignments and Acshi did really a great job. It would be better to adjust the scoring criteria on autograder so that I
could spent less time on debugging.

very good

Great.

This course would be hard to teach without someone as quality as quality as Acshi.

Perfect

Course Approval Request Form

Office of the Registrar, University of Michigan

� CHECK APPROPRIATE BOXES FOR ALL CHANGES

1;i1n I SA 1w11,11ng

soo s. Su.He sve-e1

;\no> ,\1bo1, Ml <1810'::1·1382

l'lto"e: 7311.763.2.lll

Fa.: 73<1.936.J.148

ro.cu:rriculum@umfch.edu

Action Requested
Iii New Course Date of Submission: 2019-11-04

Effective Term: Fall 2020

ro. umlch.cdu

Ill

�

□

�

�

�

�

�

□

□ Modification of Existing
Course
□ Deletion of Existing Course

Course Offered
Iii Indefinitely
□ One term only

CURRENT LISTING

Dept (Home):
Subject:
Catalog:

RO USE ONLY

Date Received:
Date Completed:
Completed By: . ' ,,

□ Course is Cross-listed with Other Departments

Department j Subject j Catalog Number

Course Title (full title)

Abbreviated Title {20 char)

REQUESTED LISTING

Dept (Home): Robotics
Subject: ROB
Catalog: 511

□ Course is Cross-listed with Other Departments

Department I Subject I Catalog Number

Course Title (full title)
Robot Operating Systems

Abbreviated Title {20 char)
RobotOpSys

Course Description (Please limit to 50 words and attach separate sheet if necessary)
The Robot Operating Systems course provides an introduction to computational models, algorithms, and

software systems for autonomous robot control that generalizes across a wide variety of machines. Topics
covered include path and motion planning, reactive control, forward and inverse kinematics, numerical
integration for dynamics, and robot middleware [design]. Significant programming.

Full Term Credit Hours Half Term Credit Hours
Undergraduate Min: 3 Graduate Min: 3 Undergraduate Min: Graduate Min:
Undergraduate Max: 3 Graduate Max: 3 Undergraduate Max: Graduate Max:

Course Credit Type
Undergraduate Student, Rackham Graduate Student

Repeatability
□ Course is Repeatable for Credit □ Course is Y graded

Maximum number of repeatable credits: □ Can be taken more than once in the same term

Subject: Catalog:

Grading Basis

Iii Graded (A - E)

□ Credit/No Credit

□ Satisfactory/Unsatisfactory Add Consent Drop Consent

�
□ Pass/Fail □ Department Consent □ Department Consent

□ Business Administration □ Instructor Consent □ Instructor Consent

Grading Iii No Consent Iii No Consent

□ Not for Credit

□ Not for Degree Credit

□ Degree Credit Only

CURRENT LISTING REQUESTED LISTING

Advisory Prerequisite (254 char)

�
Advisory Prerequisite (254 char) Linear Algebra (Math 214,217,417,419 or

equivalent) and Programming (EECS 280, 402 or

equivalent)

Enforced Prerequisite (254 char) Enforced Prerequisite (254 char)

Minimum grade requirement: Minimum grade requirement: C

□
Credit Exclusions Credit Exclusions

Course Components Graded Component
Terms Typically Offered

Iii Lecture □

□ Seminar □
Iii Fall

� □ Recitation □
□ Winter

□ Lab □
□ Spring

0 Discussion Iii
□ Summer

□ Independent Study □
□ Spring/Summer

Cognizant Faculty Member Name: Chad Jenkins Cognizant Faculty Member Title: Professor

SIGNATURES ARE REQUIRED FROM ALL DEPARTMENTS INVOLVED (Please Print AND Sign Name)

Contact Person: Denise Edmund Email: dledmund@umich.edu Phone: 7-2970

Curriculum Committee Member: Print: Date:

Curriculum Committee Chair: Print: Date:

Date:

Home Department Chair: Print: Jessy Grizzle 12/13/19

Cross-Listed Department Chair: Print: Date:

Cross-Listed Department Chair: Print: Date:

Cross-Listed Department Chair: Print: Date:

.DEPARTMENTAL/COLLEGE·. USE.ONLY

Current:

Course Description

Class Length

Contact hours /lecture):

Contact hours (recitation)

Contact hours (lab)

Additional Info:

Submitted by:

Home dept

Describe how this course fits with the degree requirements:

Requested:

Course Description

The Robot Operating Systems course provides an

introduction to computational models, algorithms, and

software systems for autonomous robot control that

generalizes across a wide variety of machines. Topics

covered include path and motion planning, reactive

control, forward and inverse kinematics, numerical

integration for dynamics, and robot middleware [design].
Significant programming.

Class Length

Full term

Contact hours (lecture):

3

Contact hours (recitation)

Contact hours (lab)

Satisfies the Acting or Reasoning requirement for the Masters and Doctoral Robotics Programs

ABET departmental program outcomes for undergraduate courses:
1,2,3,4,5,6,7

Special resources of facilities required for this course:

Supporting statement:

This Robot Operating Systems course aims to fill a need in the Robotics Program for breadth coverage over

computational dimensions at the foundations of autonomous robotics. This need has developed from our longstanding

teaching of mechanics-oriented robot modeling and control (as for the crosslisted ME 567/ROB 510). From the growth of

the field of robotics, the computational core of robot modeling and control has emerged into its own right as an area of

critical significance. Further, the proposed Robot Operating Systems course is intended to provide a pathway into further

Project Title:

Course Audience:
Responses Received:
Response Ratio:

Fall 2018 Instructor Report of MECHENG 567 001 -
EECS 398 001 - EECS 567 001 - MFG 567 001 - ROB
510 001 for Odest Jenkins

Central Campus Fall 2018 Evaluation

73
36

49.3%

Report Comments

This report is a summary that tabulates all quantitative ratings on a single page. Ratings are from the Fall 2018 teaching evaluations
of MECHENG 567 001 - EECS 398 001 - EECS 567 001 - MFG 567 001 - ROB 510 001.

Prepared by:
Creation Date:

Office of the Registrar
Tue, Jan 01, 2019

https://www.umich.edu/
http://www.explorance.com

Responses to the University-wide questions about the course:

SA A N D SD N/A
Your
Median

University-
Wide
Median

School/College
Median

This course advanced my understanding of the subject matter. 26 9 1 0 0 0 4.8 4.5 4.7

My interest in the subject has increased because of this
course.

23 10 1 2 0 0 4.7 4.1 4.4

I knew what was expected of me in this course. 14 15 6 1 0 0 4.2 4.4 4.5

Overall, this was an excellent course. 23 9 3 1 0 0 4.7 4.2 4.5

I had a strong desire to take this course. 20 15 1 0 0 0 4.6 4.0 4.4

As compared with other courses of equal credit, the workload
for this course was... (SA=Much Lighter to SD=Much Heavier)

1 2 20 7 6 0 2.8 3.0 3.0

Responses to the University-wide questions about the instructor:

SA A N D SD N/A
Your
Median

University-Wide
Median

School/College
Median

Overall, Odest Jenkins was an excellent teacher. 22 12 1 1 0 0 4.7 4.5 4.6

Odest Jenkins seemed well prepared for class
meetings.

24 11 0 1 0 0 4.8 4.8 4.7

Odest Jenkins explained material clearly. 18 11 4 2 0 1 4.5 4.6 4.6

Odest Jenkins treated students with respect. 30 5 1 0 0 0 4.9 4.8 4.8

The medians are calculated from Fall 2018 data. University-wide medians are based on all UM classes in which an item was used.
The school/college medians in this report are based on classes that are graduate level with enrollment of 16 to 74 in College of
Engineering.

University of Michigan
Fall 2019 Instructor Report With Comments

MECHENG 567 001 - EECS 367 001 - EECS 567 001 - MFG 567 001 - ROB 510
001

Odest Jenkins

32 out of 70 students responded to this evaluation.

Responses to the University-wide questions about the course:

SA A N D SD N/A
Your

Median

University-
Wide

Median
School/College

Median

This course advanced my understanding of the subject matter.
(Q1631)

18 10 2 0 1 0 4.6 4.5 4.6

My interest in the subject has increased because of this
course.(Q1632)

20 9 2 0 1 0 4.7 4.2 4.5

I knew what was expected of me in this course.(Q1633) 18 10 4 0 0 0 4.6 4.4 4.5

Overall, this was an excellent course.(Q1) 19 11 0 2 0 0 4.7 4.2 4.5

I had a strong desire to take this course.(Q4) 17 9 2 1 0 0 4.6 4.0 4.5

As compared with other courses of equal credit, the workload
for this course was...(SA=Much Lighter to SD=Much Heavier)
(Q891)

3 4 17 7 1 0 3.0 3.0 2.7

Responses to University-wide questions about the instructor:

SA A N D SD N/A
Your

Median
University-Wide

Median
School/College

Median

Overall, Odest Jenkins was an excellent teacher.(Q2) 23 6 1 1 1 0 4.8 4.6 4.6

Odest Jenkins seemed well prepared for class
meetings.(Q230)

23 5 3 1 0 0 4.8 4.8 4.7

Odest Jenkins explained material clearly.(Q199) 19 10 0 2 1 0 4.7 4.6 4.6

Odest Jenkins treated students with respect.(Q217) 28 4 0 0 0 0 4.9 4.8 4.8

The medians are calculated from Fall 2019 data. University-wide medians are based on all UM classes in which an item was used.
The school/college medians in this report are based on classes that are graduate level with enrollment of 75 or greater in College of
Engineering.

Written Comments

Comment on the quality of instruction in this course.

Comments

Great teacher and well content

Great instruction. OCJ is a very clear instructor, his lectures have a lot of examples.

I greatly enjoyed this course, the material and projects were interesting and helped me develop a good sense of the big picture
tools being used in robot simulation and controls. I would have enjoyed a bit more of a focus on the dynamics of robots (for
example the Manipulator equations) and there were times when the GSI and the Professor were not on the same page in terms of
what was expected in an assignment, but overall it was still an incredibly enjoyable course.

The lectures went well, but they are somewhat broad. This leads to the real learning coming from doing the homework
assignments. Because the assignments, for the most part, build off of each other, getting feedback on each assignment quickly
would have been very helpful.

It would be better to accelerate the grading process, so we can manage this course better.

This is simply awesome, excellent, man

The tuition for each credit is really high. Averagely, it is really expensive for each course. However, a lot of classes were cancelled or
changed as extended office hours. Michigan time was still applied, but the class still ends 10 mins ahead of time. During class, the
lecture went really fast. Student were left few time to think. With some jokes in the class, the time left for substantial content was few.
Now it is the end of this semester, but the second assignment has not been graded yet.

Excellent class. The structure of code matches with the overall progress of the class. it will be better if more TA are available for the
class because a lot of time is wasted during waiting.

top notch

I wish we could go more in–depth to some of the concepts taught in class. That would make project implementation alot easier.

The professor has not graded an assignment in over 2 months. He has graded 1 of 5 submitted assignments. It is impossible to
know how you are doing in the class and due to his delay in feedback, students are unable to submit regrades as promised in the
syllabus. The lectures are often too high level and frequently tangential to a point that they are useless. I felt like I learned more from
reading the text book than going to class. The TA's lab section was extremely useful.

The grade for assignments comes out really late. Grades start from assignment 2 didn't come out until the end of the semester. In
this case students can not get feedback frequently from last homework, and this also increase the workload of students during
finals.

AutoRob
Introduction to Autonomous Robotics

Michigan EECS 367

Robot Kinematics and Dynamics

Michigan ME 567 EECS 567 ROB 510

Fall 2019

AUTOROB

 assignments: schedule kineval git 1 2 3 4 5 6 7

https://github.com/autorob/kineval-stencil

Introduction

The AutoRob course provides an introduction to core topics in the modeling and
control of autonomous robots. AutoRob has two sections: an undergraduate section
offered as Introduction to Autonomous Robotics (EECS 367) and a graduate section
offered as Robot Kinematics and Dynamics (ME/EECS 567 or ROB 510) with
expanded advanced material. The AutoRob course can be thought of as the
foundation to build "brains for robots". That is, given a robot as a machine with
sensing, actuation, and computation, how do we build computational models,
algorithms, and program that allow the robot to function autonomously? Such
computation involves functions for robots to perceive the world, make decisions
towards achieving a given objective, and transforming decided actions into motor
commands. These functions are essential for modern robotics, especially for mobile
manipulators such as the pictured Fetch robot.

The AutoRob course focuses on the issues of modeling and control for autonomous
robots with an emphasis on manipulation and mobility. Successful completion of
AutoRob will result in code modules for "mobile pick-and-place". That is, given a robot
and perception of the robot's environment, the resulting code modules can enable the
robot to pick up an object at an arbitrary location and place the object in a new
location.

AutoRob projects ground course concepts through implementation in
JavaScript/HTML5 supported by the KinEval code stencil (snapshot below from
Mozilla Firefox). These projects will cover graph search path planning (A* algorithm),
basic physical simulation (Lagrangian dynamics, numerical integrators), proportional-
integral-derivative (PID) control, forward kinematics (3D geometric matrix transforms,
matrix stack composition of transforms, axis-angle rotation by quaternions), inverse
kinematics (gradient descent optimization, geometric Jacobian), and motion planning
(simple collision detection, sample-based motion planning). Additional topics that
could be covered include potential field navigation, Bayesian filtering, Cyclic
Coordinate Descent, Monte Carlo localization, and Newton-Euler dynamics.

http://fetchrobotics.com/research/
https://en.wikipedia.org/wiki/JavaScript
https://en.wikipedia.org/wiki/HTML
https://github.com/autorob/kineval-stencil
https://en.wikipedia.org/wiki/A*_search_algorithm
https://en.wikipedia.org/wiki/Classical_mechanics
https://en.wikipedia.org/wiki/Numerical_integration
https://en.wikipedia.org/wiki/PID_controller
https://en.wikipedia.org/wiki/Transformation_matrix
https://en.wikipedia.org/wiki/Quaternion
https://en.wikipedia.org/wiki/Gradient_descent
https://en.wikipedia.org/wiki/Jacobian_matrix_and_determinant
https://en.wikipedia.org/wiki/Collision_detection
https://en.wikipedia.org/wiki/Motion_planning

AutoRob projects will roughly follow conventions and structures from the Robot
Operating System (ROS) and Robot Web Tools (RWT) software frameworks, as
widely used across robotics. These conventions include the URDF kinematic modeling
format, ROS topic structure, and the rosbridge protocol for JSON-based messaging.
KinEval uses threejs for in-browser 3D rendering and Numeric Javascript for select
matrix routines. Auxiliary code examples and stencils will often use the jsfiddle
development environment.

You will use an actual robot (at least once)!

KinEval allows for your code to work with any robot that supports the rosbridge
protocol, which includes any robot running ROS. Given a URDF description, the code
your produce for AutoRob will allow you to view and control the motion of any mobile
manipulation robot with rigid links. Your code will also be able to access the sensors
and other software services of the robot for your continued work as a roboticist.

http://ros.org/
https://github.com/RobotWebTools
http://wiki.ros.org/urdf/Tutorials/Create%20your%20own%20urdf%20file
http://wiki.ros.org/Topics
https://github.com/RobotWebTools/rosbridge_suite/blob/develop/ROSBRIDGE_PROTOCOL.md
https://json.org/
http://threejs.org/
https://github.com/sloisel/numeric/
http://jsfiddle.net/
https://github.com/RobotWebTools/rosbridge_suite/blob/develop/ROSBRIDGE_PROTOCOL.md

Related Courses

AutoRob is a computing-friendly pathway into robotics, but does not cover the whole
of robotics. The scope of AutoRob is robot modeling and control, which is well-suited
as preparation for a Major Design Experience in EECS 467 (Autonomous Robotics
Laboratory). EECS 467 and ROB 550 (Robotics Systems Laboratory) provides more
extensive hands-on experience with a small set of real robotic platforms. In contrast,
AutoRob emphasizes the creation of a generalized modeling and control software
stack in simulation, with interfaces to work with a diversity of real robots.

AutoRob provides a computation-focused branch of ME 567 (Robot Kinematics and
Dynamics). The common ME 567 is a more in-depth mathematical analysis of
dynamics and control with extensive use of Denavit-Hartenberg parameters for
kinematics. AutoRob spends more coverage on path and motion planning with use of
quaternions and matrix stacks for kinematics. In AutoRob, coding is believing.

AutoRob is also a complement to courses covering perception (EECS 568 Mobile
Robotics, EECS 442 Computer Vision), robot building (EECS 498 Hands-on Robotics,
ME 552 Mechatronics), robot simulation (ME 543 Analytical and Computational
Dynamics), controls systems (EECS 460 Control Systems Analysis and Design,
EECS 461 Embedded Control Systems), and artificial intelligence (EECS 492

https://idioms.thefreedictionary.com/seeing+is+believing

Introduction to Artificial Intelligence), as well as general graduate courses in robotics
(ROB 501 Math for Robotics, ROB 550 Robotic Systems Laboratory).

Commitment to equal opportunity

As indicated in the General Standards of Conduct for Engineering Students, this
course is committed to a policy of equal opportunity for all persons and does not
discriminate on the basis of race, color, national origin, age, marital status, sex, sexual
orientation, gender identity, gender expression, disability, religion, height, weight, or
veteran status. Please feel free to contact the course staff with any problem, concern,
or suggestion. We ask that all students treat each other with respect.

Accommodations for Students with Disabilities

If you believe an accommodation is needed for a disability, please let the course
instructor know at your earliest convenience. Some aspects of this course, the
assignments, the in-class activities, and the way the course is usually taught may be
modified to facilitate your participation and progress. As soon as you make us aware
of your needs, the course staff can work with the Services for Students with
Disabilities (SSD, 734-763-3000) office to help us determine appropriate academic
accommodations. SSD typically recommends accommodations through a Verified
Individualized Services and Accommodations (VISA) form. Any information you
provide is private and confidential and will be treated as such. For special
accommodations for any academic evaluation (exam, quiz, project), the course staff
will need to receive the necessary paperwork issued from the SSD office by
September 30, 2019.

Student mental health and well being

The University of Michigan is committed to advancing the mental health and wellbeing
of its students. If you or someone you know is feeling overwhelmed, depressed,
and/or in need of support, services are available. For help, please contact Counseling
and Psychological Services (CAPS) by phone at 734-764-8312, during and after
hours, on weekends and holidays, or through its counselors physically located in
schools on both North and Central Campus. You may also consult University Health
Service (UHS, 734-764-8320) as well as its services for alcohol or drug concerns.

http://www.engin.umich.edu/college/academics/bulletin/rules#generalstandardsofconductforengineeringstudents
http://ssd.umich.edu/
https://caps.umich.edu/
https://www.uhs.umich.edu/mentalhealthsvcs
https://www.uhs.umich.edu/aodresources

There is also a more comprehensive listing of mental health resources available on
and off campus.

Course Staff

Faculty Instructor

Chad Jenkins
ocj addrsign umich
Office: Beyster 3644
Office Hours: Monday 3-5pm, Tuesday 1-3pm

Graduate Student Instructor

Anthony Opipari
topipari addrsign umich
Office Hours (Beyster 1637): Monday 3-5pm, Friday 12:30-2:30pm

Meeting time/place

Course Lecture
Monday and Wednesday 1:30-2:40 MMT (Michigan Mean Time)
EECS 1500

Laboratory Section (EECS 367)
Friday 2:30-3:20 MMT (Michigan Mean Time)
EECS 1500

Discussion channel

The AutoRob slack team will be used for course-related discussions and
announcements. Slack is a cloud-hosted online discussion and collaboration system
with functionality that resembles Internet Relay Chat (IRC). Slack clients are available
for most modern operating systems as well as through the web.

http://umich.edu/~mhealth/
http://web.eecs.umich.edu/~ocj
https://autorob.slack.com/
https://en.wikipedia.org/wiki/Slack_(software)
https://en.wikipedia.org/wiki/Internet_Relay_Chat

Students enrolled in AutoRob will receive an invitation to the AutoRob slack team.
Upon accepting this invitation, you should be automatically subscribed to 9 channels:

the #general channel for general course discussion and administrivia,

the #random channel for non-course items that are of general interest to the
course and larger field of robotics,

seven assignment channels for each class project (#asgn1-pathplan, #asgn2-
pendularm, #asgn3-fk, #asgn4-dance-fsm, #asgn5-ik #asgn6-rrt, #asgn7-best-
use),

the #advanced-extensions channel for discussion and announcement of graduate
advanced extensions to each project.

Actively engaging in course discussions is a great way to become a better roboticist.

Prerequisites

This course has recommended prerequisites for "Linear Algebra" and "Data Structures
and Algorithms", or permission from the instructor.

Programming proficiency: EECS 281 (Data Structures and Algorithms), EECS 402
(Programming for Scientists and Engineers), or proficiency in data structures and
algorithms should provide an adequate programming background for the projects in
this course. Interested students should consult with the course instructor if they have
not taken EECS 281, EECS 402, or its equivalent, but have some other notable
programming experience.

Mathematical proficiency: Math 214, 217, 417, 419 or proficiency in linear algebra
should provide an adequate mathematical background for the projects in this course.
Interested students should consult with the course instructor if they have not taken
one of the listed courses or their equivalent, but have some other strong background
with linear algebra.

Recommended optional proficiency: Differential equations, Computer graphics,
Computer vision, Artificial intelligence

The instructor will do their best to cover the necessary prerequisite material, but no
guarantees. Linear algebra will be used extensively in relation to 3D geometric
transforms and systems of linear equations. Computer graphics is helpful for under-
the-hood understanding of threejs. Computer vision and AI share common concepts
with this course. Differential equations are used to cover modeling of motion dynamics
and inverse kinematics, but not explicitly required.

Textbook

The AutoRob course is compatible with both the Spong et al. and Corke textbooks
(listed below), although only one of these books is needed. Depending on individual
styles of learning, one textbook may be preferrable over the other. Spong et al. is the
listed required textbook for AutoRob (as well as ME 567) and is supplemented with
additional handouts. The Corke textbook provides broader coverage with an emphasis
on intuitive explanation. A pointer to the Lynch and Park textbook is provided for an
alternative perspective on robot kinematics that goes deeper into spatial transforms in
exponential coordinates. Lynch and Park also provides some discussion and context
for using ROS. This semester, AutoRob will not officially support the Lynch and Park
book, but will make every effort to work with students interested in using this text.

Robot Modeling and Control
Mark W. Spong, Seth Hutchinson, and M. Vidyasagar
Wiley, 2005
Available at Amazon

Alternate textbooks

Robotics, Vision and Control: Fundamental Algorithms in MATLAB
Peter Corke
Springer, 2011

http://bcs.wiley.com/he-bcs/Books?action=index&itemId=0471649902&bcsId=2888
http://www.amazon.com/Robot-Modeling-Control-Mark-Spong/dp/0471649902
http://www.springer.com/us/book/9783642201431

Modern Robotics: Mechanics, Planning, and Control
Kevin M. Lynch, Frank C. Park
Cambridge University Press, 2017

Optional texts

JavaScript: The Good Parts
Douglas Crockford
O'Reilly Media / Yahoo Press, 2008

Principles of Robot Motion
Howie Choset, Kevin M. Lynch, Seth Hutchinson, George A. Kantor, Wolfram Burgard,
Lydia E. Kavraki, and Sebastian Thrun
MIT Press, 2005

Projects and Grading

The AutoRob course will assign 7 projects (6 programming, 1 oral) and 5 quizzes.
Each project has been decomposed into a collection of features, each of which is
worth a specified number of points. AutoRob project features are graded as “checked”
(completed) or “due” (incomplete). Prior to being assigned, upcoming projects will
have the status of "pending." In terms of workload, each project is expected to take
approximately 4 hours of work on average (as a rough estimate). Each quiz will
consist of 4 short questions that will be within the scope of previously graded projects.
In other words, each quiz question should be readily answerable given knowledge
from correctly completing projects on time.

Individual final grades are assigned based on the sum of points earned from
coursework (detailed in subsections below). The timing and due dates for course
projects and quizzes will be announced on an ongoing basis. All project work must be
checked by the end of classes.

EECS 367: Introduction to Autonomous Robotics

In the undergraduate section, each fully completed project is weighted as 12 points
and each correctly answered quiz question is weighted as 1 point. Based on this sum

http://modernrobotics.org/
http://shop.oreilly.com/product/9780596517748.do
http://mitpress.mit.edu/books/principles-robot-motion

of points from coursework, an overall grade for the course is earned as follows: An "A"
grade in the course is earned if graded coursework sums to 93 points or above; A "B"
grade in the course is earned if graded coursework sums to 83 points or above; a "C"
grade in the course is earned if graded coursework sums to 73 points or above. The
instructor reserves the option to assign appropriate course grades with plus or minus
modifiers.

ME 567 | EECS 567 | ROB 510: Robot Kinematics and Dynamics

In the graduate section, each fully completed project is weighted as 18 points, each
correctly answered quiz question is weighted as 1 point. Students in this section have
the opportunity to earn 4 additional points through an advanced extension of a course
project. Examples of advanced extensions include implementation of an LU solver for
linear systems of equations, inverse kinematics by Cyclic Coordinate Descent, one
additional motion planning algorithm, point cloud segmentation, and a review of a
current research publication in robotics. Advanced extensions are due by the course
final grading deadline, and do not need to be completed for the deadlines of each
assignment.

Based on the sum of points earned from coursework, an overall grade for the course
is earned as follows: An "A" grade in the course is earned if graded coursework sums
to 135 points or above; A "B" grade in the course is earned if graded coursework
sums to 120 points or above; a "C" grade in the course is earned if graded coursework
sums to 105 points or above. The instructor reserves the option to assign appropriate
course grades with plus or minus modifiers.

Project Rubric (tenative and subject to change)

The following project features are planned for AutoRob this semester. Students
enrolled in ME/EECS 567 will complete all features. Students in the undergraduate
section are not expected to implement features for the graduate section.

Points Sections Feature
Assignment 1: 2D Path Planning

4 All Heap implementation

8 All A-star search

2 Grad BFS

2 Grad DFS

2 Grad Greedy best-first

Assignment 2: Pendularm

4 All Euler integrator

4 All Velocity Verlet integrator

4 All PID control

1 Grad Verlet integrator

2 Grad RK4 integrator

3 Grad Double pendulum

Assignment 3: Forward Kinematics

2 All Core matrix routines

8 All FK transforms

2 All Joint selection/rendering

2 Grad Base offset transform

4 Grad New robot definition

Assignment 4: Dance Controller

6 All Quaternion joint rotation

2 All Interactive base control

2 All Pose setpoint controller

2 All Dance FSM

2 Grad Joint limits

2 Grad Prismatic joints

2 Grad Fetch rosbridge interface

Assignment 5: Inverse Kinematics

6 All Manipulator Jacobian

3 All Gradient descent with Jacobian transpose

3 All Jacobian pseudoinverse

6 Grad Euler angle conversion

Assignment 6: Motion Planning

4 All Collision detection

2 All 2D RRT-Connect

6 All Configuration space RRT-Connect

6 Grad RRT-Star

Project Submission and Regrading

Git repositories will be used for project implementation, version control, and
submission for grading. The implementation of an individual project is submitted
through an update to the master branch of your designated repository. Updates to the
master branch must be committed and pushed prior to the due date for each
assignment for any consideration of full credit. Your implementation will be checked
out and executed by the course staff. Through your repository, you will be notified by
the course staff whether your implementation of assignment features is sufficient to
receive credit.

Late Policy

Do not submit assignments late. The course staff reserves the right to not grade
late submissions. The course instructor reserves the right to decline late submissions
and/or adjust partial credit on regraded assignments.

If granted by the course instructor, late submissions can be graded for partial credit,
with the following guidelines. Submissions pushed within two weeks past the project
deadline will be graded for 80% credit. Submissions pushed within four weeks of the
project deadline will be graded for 60% credit. Submissions pushed at any time before
the semester project submission deadline (December 13, 2019) will be considered for
50% credit. As a reminder, the course instructor reserves the right to decline late
submissions and/or adjust partial credit on regraded assignments.

Regrading Policy

The regrading policy allows for submission and regrading of projects up through the
final grading of projects, which will be December 13 for the Fall 2019 Semester. This
regrading policy will grant full credit for project submissions pushed to your repository
before the corresponding project deadline. If a feature of graded project is returned as
not completed (or "DUE"), your code can updated for consideration at 80% credit. This
code update must be pushed to your repository within two weeks from when the
originally graded project was returned. Regrades of projects updated beyond this two
week window can receive at most 60% credit. The course staff will allow one regrade
for each grading iteration.

Final Grading

All grading will be finalized on December 13, 2019. Regrading of specific assignments
can be done upon request during office hours. No regrading will be done after grades
are finalized.

Repositories

You are expected to provide a private git repository for your work in this course with
the course instructor added as a read/write collaborator. If needed, the course staff
can assist in the setup of an online git repository through providers such as github or
bitbucket. All Michigan Engineering students have access to an account on the
internal EECS gitlab server.

There are many different tutorials for learning how to use git repositories. The
AutoRob course site has its own basic quick start tutorial. The EECS gitlab server has
a basic quick start tutorial. The Pro Git book provides an in-depth introduction to git
and version control. As different people often learn through different styles, the Git
Magic tutorial has also proved quite useful when a different perspective is needed. git:
the simple guide has often been a great and accessible quick start resource.

We expect students to use these repositories for collaborative development as well as
project submission. It is the responsibility of each student group to ensure their
repository adheres to the Collaboration Policy and submission standards for each
assignment. Submission standards and examples will be described for each
assignment as needed.

IMPORTANT: do not modify the directory structure in the KinEval stencil. For
example, the file "home.html" should appear in the top level of your repository.
Repositories that do not follow this directory structure will not be graded.

Code Maintenance Policy and Branching

This section outlines expectations for maintenance of source code repositories used
by students for submission of their work in this course. Repositories that do not
maintain these standards will not be graded at the discretion of the course staff.

https://github.com/
https://bitbucket.org/
https://gitlab.eecs.umich.edu/
http://gitlab.eecs.umich.edu/help/gitlab-basics/README.md
http://www.git-scm.com/book/en/v2
http://www-cs-students.stanford.edu/~blynn/gitmagic/
http://rogerdudler.github.io/git-guide/
https://github.com/autorob/kineval-stencil

Code submitted for projects in this course must reside in the top level directory of the
master branch of your repository. The directory structure provided in the KinEval
stencil must not be modified. For example, the file "home.html" should appear in the
top level directory of your repository.

The master branch must always maintain a working (or stable) version of your code
for this course. Code in the master branch can analyzed at anty time with respect to
any assignment whose due date has passed. Improperly functioning code on the
master branch can effect the grading of an assignment (even after the assignment
due date) up to the start of the following semester.

The master branch must always be in compliance with the Michigan Honor Code and
Michigan Honor License, as described below in the course Collaboration Policy. A
commit of code to your master branch must be signed with your name and the
instructor name at the bottom of the file named LICENSE with an unmodified version
of the Michigan Honor License. Without a properly asserted license file, a code
commit to your repository will be considered ineligible for grading as an incomplete
submission.

If advanced extension features have been implemented and are ready for grading,
such features must be listed in the file "advanced_extensions.txt" in the top level
directory of the master. Advanced extension features not listed in this file may not be
graded at the discretion of the course staff.

BRANCHING

You are encouraged to update your repository often with the help of branching.
Branching allows for you spawn a copy of code in your master branch for
development, and merging these changes back into master once successfully
updated. For example, you can create an Assignment-2 branch for your work on the
second project, as it in development and experimentation, while keeping your master
branch stable for grading. Once you are confident in your implementation of the
second project, you can merge your Assignment-2 branch back into the master
branch. The master branch at this point will have working stable versions of the first
and second projects, which can be graded. Similarly, an Assignment-3 branch can be

https://github.com/autorob/kineval-stencil

created for the next project as it develops, and then merged into the master branch
when ready for grading. This configuration allows your work to be continually updated
and build upon such that versions are tracked and interruptions due to grading are
minimized.

Collaboration Policy

This collaboration policy covers all course material and assignments unless otherwise
stated. All submitted assignments for this course must adhere to the Michigan Honor
License (the 3-Clause BSD License plus two academic integrity clauses).

Course material, concepts, and documentation may be discussed with anyone.
Discussion during and examination or quiz is not allowed with anyone other than a
member of the course staff. Assignments may be discussed with the other students at
the conceptual level. Discussions may make use of a whiteboard or paper.
Discussions with others (or people outside of your assigned group) cannot include
writing or debugging code on a computer or collaborative analysis of source code that
is not your own. You may take notes away from these discussions, provided these
notes do not include any source code.

The code for your implementation may not be shown to anyone outside of your group,
including granting access to repositories or careless lack of protection. You do not
need to hide the screen from anyone, but you should not attempt to show anyone your
code. When you are done using any robot device such that another group may use it,
you must remove all code you have put onto the device. You may not share your code
with others outside of your group. At any time, you may show others the implemented
program running on a device or simulator, but you may not discuss specific debugging
details about your code while doing so.

This policy applies not only applies to collaboration during the current semester, but
also any past or future instantiations of this course. Although course concepts are
intended for general use, your implementation for this course must remain private
after the completion of the course. It is expressly prohibited to share any code
previously written and graded for this course with students currently enrolled in this

https://opensource.org/licenses/BSD-3-Clause

course. Similarly, it is expressly prohibited for any students currently enrolled in this
course to refer to any code previously written and graded for this course.

IMPORTANT: To acknowledge compliance with this collaboration policy, append your
name the file "LICENSE" in the main directory of your repository with the following
text. This appending action is your attestation of your compliance with the Michigan
Honor License and the Michigan Honor Code statement:

"I have neither given nor received unauthorized aid on this course project
implementation, nor have I concealed any violations of the Honor Code."

This attestation of the honor code will be considered updated with the current date
and time of each commit to your repository. Repository commits that do not include
this attestation of the honor code will not be graded at the discretion of the course
instructor.

Should you fail to abide by this collaboration policy, you will receive no credit for this
course. The University of Michigan reserves the right to pursue any means necessary
to ensure compliance. This includes, but is not limited to prosecution through The
College of Engineering Honor Council, which can result in your suspension or
expulsion from the University of Michigan. Please refer to the Engineering Honor
Council for additional information.

Course Schedule (tentative and subject to change)

Note: Assignment descriptions will have updated assignment due dates. Assignment
due dates listed in the schedule are merely a guide.
Note: Updated lecture slides will be posted after the associated lecture has been
given. Slides provided below are from a previous offering of this course, and provided
as a courtesy.

Date Topic Reading Project
Sep
4

Initialization: Course overview, Robotics
roadmap, Path planning quick start

Spong Ch.1

Corke Ch.1

Setup git repository

http://ossa.engin.umich.edu/honor-council/
https://autorob.org/lectures/autorob_01_initialization.pdf

What is a robot?: Brief history and definitions for
robotics Out: Path Planning

Sep
6

367 Lab: Git-ing started with git, JavaScript, and
KinEval

Week 2

Sep
9

Path Planning: DFS, BFS, A-star, Greedy best
first Wikipedia

Sep
11

JavaScript and git tutorial: Project workflow,
JS/HTML5, Document Object Model, Data
Structures in JS, Animation in JS/H5, Version
Control

Crockford,
HTML Sandbox,
hello.html (source),
JavaScript by Example (source),
hello_anim (source),
hello_anim_text (source)

Sep
13

367 Lab: heapsort.html and search_canvas.html
code overview

Week 3

Sep
16 Extended office hours

Sep
18 Quiz 1 Due: Path Planning

Out: Pendularm

Sep
20 367 Lab: pendularm1.html code overview

Week 4

Sep
23

Dynamical Simulation: Simple pendulum,
Lagrangian equation(s) of motion, Initial value
problem, Explicit integrators: Euler, Verlet, and
Runge-Kutta 4, Double pendulum

Spong Ch.7 | Corke Ch.9
Euler's Method
Verlet Integration,
Runge-Kutta;
Witkin&Baraff 1998: Dynamics
Witkin&Baraff 1998: Integrators

Sep
25

Motion Control: Cartesian vs. generalized
coordinates, open-loop vs. closed-loop control,
PID control; Rigid body dynamics

Spong 6.3,
Vondrak+ 2012

Astrom Ch. 6

Sep
27 367 Lab: pendularm1.html support

Week 5

Sep
30

Linear Algebra Refresher: Systems of linear
equations, vector spaces and operations, least
squares approximations

Spong A-B

Corke D

Forward Kinematics: Kinematic chains, URDF,
homogeneous transforms, matrix stack
traversal, D-H convention

Spong 2, 3.1, 3.2

Corke 7.1-2

Oct
2

Axis-angle Rotation and Quaternions: Motors,
Euler angles, gimbal lock, Rodrigues rotation,

Handout 1, 2
Daniilidis 1999

Due: Pendularm
Out: Forward

https://autorob.org/lectures/autorob_00_robot_what_is.pdf
https://autorob.org/labs/autorob_lab_01_git.pdf
https://autorob.org/lectures/autorob_02_graph_search.pdf
https://en.wikipedia.org/wiki/A*_search_algorithm
https://autorob.org/lectures/autorob_03_jsh5_git.pdf
https://autorob.org/examples/sandbox.html
https://autorob.org/examples/hello.html
view-source:http://autorob.org/examples/hello.html
https://autorob.org/examples/js_overview.html
view-source:http://autorob.org/examples/js_overview.html
https://autorob.org/examples/hello_anim.html
view-source:http://autorob.org/examples/hello_anim.html
https://autorob.org/examples/hello_anim_text.html
view-source:http://autorob.org/examples/hello_anim_text.html
https://autorob.org/labs/autorob_lab_02_search_canvas.pdf
https://autorob.org/labs/autorob_lab_03_pendularm.pdf
https://autorob.org/lectures/autorob_04_dynamics_pendulum.pdf
https://en.wikipedia.org/wiki/Euler_method
https://en.wikipedia.org/wiki/Verlet_integration
https://en.wikipedia.org/wiki/Runge%E2%80%93Kutta_methods#The_Runge.E2.80.93Kutta_method
https://www.cs.cmu.edu/~baraff/sigcourse/notesd1.pdf
https://www.cs.cmu.edu/~baraff/sigcourse/notesb.pdf
https://autorob.org/lectures/autorob_05_control_pid.pdf
http://ocj.name/papers/marek_pami2012.pdf
http://www.cds.caltech.edu/~murray/courses/cds101/fa02/caltech/astrom-ch6.pdf
https://autorob.org/labs/autorob_lab_04_pendularm.pdf
https://autorob.org/lectures/autorob_06_linear_refresh.pdf
https://autorob.org/lectures/autorob_07_fk_matrixstack.pdf
https://autorob.org/lectures/autorob_08_fk_quaternions.pdf
https://en.wikipedia.org/wiki/Gimbal_lock
https://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation
http://journals.sagepub.com/doi/pdf/10.1177/02783649922066213

rotation in complex spaces, Dual quaternions
and screw coordinates

Corke 2.2-3 Kinematics

Oct
4 367 Lab: KinEval and urdf.js code overview

Week 6

Oct
7 Quiz 2

Oct
9 Course meeting cancelled - off-site meeting

Oct
11 367 Lab: Quaternions in KinEval

Week 7

Oct
14 No course meeting - Fall Study Break

Oct
16

Reactive Controllers: Reactive and Deliberative
Decision Making, Finite State Machines,
Subsumption Architecture

Brooks 1986,
Mataric 1992,
Platt+ 2004,
Cunningham+
2015

Due: Forward
Kinematics
Out: Dance Contest

Oct
18

367 Lab: KinEval pose parameters and HTML5
audio

Week 8

Oct
21

Robot Middleware: Hardware Abstraction, ROS,
LCM, Publish-subscribe messaging, rosbridge,
Client-server messaging

Quigley+ 2009,
Huang+ 2010,
Toris+ 2015

Oct
23

Inverse Kinematics 1 - Closed-form: Joint vs.
Endeffector control, Planar 2-link arm, Closed
form solutions, Cyclic Coordinate Descent

Spong 3.3

Corke 7.3

IK robot game

Oct
25

367 Lab: rosbridge/FK: connect your code to a
real robot

Week 9

Oct
28

Inverse Kinematics 2 - Non-linear Optimization:
Gradient descent, Manipulator Jacobian,
Jacobian transpose and pseudoinverse

Spong 4,
Wang&Chen
1991, Buss 2009,
Beeson+ 2015

Corke 8

Oct
30 Quiz 3

Due: Dance Contest
Out: Inverse
Kinematics

Nov
1

367 Lab: KinEval IK control flow and
parameters

https://autorob.org/labs/autorob_lab_05_kineval.pdf
https://autorob.org/lectures/autorob_09_fsm_subsumption.pdf
http://ieeexplore.ieee.org/abstract/document/1087032/
https://ieeexplore.ieee.org/abstract/document/143349
https://ieeexplore.ieee.org/abstract/document/1307247
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7139412
https://autorob.org/labs/autorob_lab_06_fsm.pdf
https://autorob.org/lectures/autorob_10_pointclouds_middleware.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.637.7432&rep=rep1&type=pdf
https://april.eecs.umich.edu/pdfs/huang2010.pdf
http://ocj.name/papers/rctoris_iros2015.pdf
https://autorob.org/lectures/autorob_11_ik_closedform.pdf
https://scratch.mit.edu/projects/10607750/
https://autorob.org/lectures/autorob_10_pointclouds_middleware.pdf
https://autorob.org/lectures/autorob_12_ik_jacobian.pdf
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=86079
http://math.ucsd.edu/~sbuss/ResearchWeb/ikmethods/iksurvey.pdf
https://personal.traclabs.com/~pbeeson/papers/Beeson-humanoids-15.pdf
https://autorob.org/labs/autorob_lab_07_ik.pdf

Week 10

Nov
4

Bug Algorithms: Reaction vs. Deliberation
revisted, Bug[0-2], Tangent Bug

Lumelsky+ 1986,
Kamon+ 1996

Corke 5

Nov
6 ROS/catkin tutorial session Example tutorial

result

Nov
8 367 Lab: ROS/catkin/rosbridge continued

Week 11

Nov
11

Configuration Spaces: Curse of dimensionality,
Configuration space vs. Workspace, Minkowski
planning, Costmaps, Holonomicity

Spong 5

Corke 4, 5

Nov
13

Sample-based Planning: Probabilistic
roadmaps, RRT-based motion planning

Kavraki+ 1996,
Kuffner+ 2000,
McMahon+ 2018

Potential fields: Gradient descent revisited, local
search, downhill simplex, Wavefront planning

Khatib 1986,
Jarvis 1993,
Zelinsky 1992

Due: Inverse
Kinematics
Out: Motion
Planning

Nov
15

367 Lab: search_canvas.html revisited for 2D
RRT

Week 12

Nov
18

Collision Detection: 3D Triangle-Triangle
Testing, Oriented Bounding Boxes, Axis-Aligned
Bounding Boxes, Separating Axis Theorem

Gottschalk+
1996, Moller
1997

Nov
20 Quiz 4

Nov
22

367 Lab: KinEval RRT stencil and AABB
collision detection

Week 13

Nov
25 Extended Office Hours -

Nov
27

Course meeting cancelled - Thanksgiving
Recess

Week 14

Dec
2

3D Point Cloud Segmentation: Point cloud
segmentation, Principal Components Analysis,
Connected components

PCA,
Rusu+ 2008,
ten Pas+ 2014,

Task Planning Overview: Decision making
revisited, declarative programming, axiomatic
state, planning operators

Fikes+ 1971,
Laird+ 1987,
Trafton+ 2013,
Zeng+ 2018

https://autorob.org/lectures/autorob_13_bugs.pdf
https://ieeexplore.ieee.org/abstract/document/1104175
http://www.cs.technion.ac.il/~ehudr/publications/pdf/KamonRR96i.pdf
https://docs.google.com/presentation/d/1U9UOnkoiq7M6xPRR8n7gDFCWzR3ocG3DqrsNQG0Dymw/edit?usp=sharing
https://autorob.org/lectures/autorob_14_configuration_spaces.pdf
https://autorob.org/lectures/autorob_15_roadmaps_rrt.pdf
http://www.kavrakilab.org/publications/kavraki-svestka1996probabilistic-roadmaps-for.pdf
https://ieeexplore.ieee.org/abstract/document/844730
http://ocj.name/papers/tamcm_iros2018.pdf
https://autorob.org/lectures/autorob_16_potentials_wavefront.pdf
https://cs.stanford.edu/group/manips/publications/pdfs/Khatib_1986_IJRR.pdf
https://books.google.com/books?id=8MDsCgAAQBAJ&pg=PA3&lpg=PA3&dq=Distance+Transform+Based+Path+Planning+for+Robot+Navigation&source=bl&ots=4YC-ov9RTx&sig=uQAPV5UEPkqs2_JbmUWQ_Lcunec&hl=en&sa=X&ved=0ahUKEwi28Kz3yJnXAhWH6oMKHbOPAW4Q6AEINjAC#v=onepage&q=Distance%20Transform%20Based%20Path%20Planning%20for%20Robot%20Navigation&f=false
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=182671
https://autorob.org/lectures/autorob_16_collision_detection.pdf
https://wwwx.cs.unc.edu/~walk/papers/gottscha/sig96.pdf
http://fileadmin.cs.lth.se/cs/Personal/Tomas_Akenine-Moller/code/tritri_tam.pdf
https://autorob.org/labs/autorob_lab_08_rrt.pdf
http://arxiv.org/pdf/1404.1100.pdf
http://www.willowgarage.com/sites/default/files/Rusu08RAS-Semantic.pdf
http://www.ccs.neu.edu/home/atp/publications/affordances_iser2014_final.pdf
https://www.sciencedirect.com/science/article/pii/0004370271900105
https://www.sciencedirect.com/science/article/pii/0004370287900506
https://dl.acm.org/citation.cfm?id=3109702
http://ocj.name/papers/zengzhen_icra2018.pdf
http://www.cc.gatech.edu/~dellaert/pub/Dellaert99icra.pdf

Dec
4

Localization and Mapping Overview: Bayes rule,
Bayesian filtering, Monte Carlo Localization,
Factor Graphs, SGD-SLAM, Scene estimation

Dellaert+ 1999,
Olson+ 2006,
Sui+ 2017

Due: Motion
Planning

Week 15

Dec
9 Quiz 5

Dec
11 Due: Best Use of Robotics

Dec
13 Grading finalized

Slides from this course borrow from and are indebted to many sources from around
the web. These sources include a number of excellent robotics courses at various
universities.

Assignment 1: Path Planning

Due 11:59pm, Wednesday, September 18, 2019

The objective of the first assignment is to implement a collision-free path planner in
JavaScript/HTML5. Path planning is used to allow robots to autonomously navigate in
environments from previously constructed maps. A path planner essentially finds a set
of waypoints (or setpoints) for the robot to traverse and reach its goal location without
collision. As covered in other courses (EECS 467, ROB 550, or EECS 568), such
maps can be estimated through methods for simultaneous localization and mapping.
Below is an example from EECS 467 where a robot performs autonomous navigation
while simultaneously building an occupancy grid map:

http://www.cc.gatech.edu/~dellaert/pub/Dellaert99icra.pdf
https://april.eecs.umich.edu/pdfs/olson2006icra.pdf
http://ocj.name/papers/zsui_iros2017.pdf
https://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping
https://www.youtube.com/playlist?list=PLDutmfAv2lfZ9M0XyYfY4N8EwLJhy58G6
https://youtu.be/c-e12F_QqiM

For this assignment, you will implement the planning part of autonomous navigation
as an A-star graph search algorithm. A-star infers the shortest path from a start to a
goal location in an arbitrary 2D world with a known map (or collision geometry). This
A-star implementation will consider locations in a uniformly space grid. You will
implement a heap data structure as a priority queue for visiting these locations.

If properly implemented, the A-star algorithm should produce the following path (or
path of similar length) using the provided code stencil:

EECS 467 WInter 2017 escape challenge - team2EECS 467 WInter 2017 escape challenge - team2

https://www.youtube.com/watch?v=c-e12F_QqiM

Cloning the Stencil Repository

The first step for completing this project (and all projects for AutoRob) is to clone the
KinEval stencil repository. The appended git quick start below is provided those
unfamiliar with git to perform this clone operation, as well as commiting and pushing
updates for project submission. IMPORTANT: the stencil repository should be cloned
and not forked.

Throughout the KinEval code stencil, there are markers with the string "STENCIL" for
code that needs to be completed for course projects.

https://github.com/autorob/kineval-stencil

Heap Sort Tutorial

For those new to JavaScript/HTML5, the recommended starting point is to complete
the heap sort implementation in the "tutorial_heapsort" subdirectory of the stencil
repository. In this directory, a code stencil in JavaScript/HTML5 is provided in two files:
"heapsort.html" and "heap.js". Comments are provided throughout these files to
describe the structure of JavaScript/HTML5 and its programmatic features. In addition,
there are other tutorial-by-example files in the "tutorial_js" directory. Any of these files
can be run by simply opening them in a web browser.

Opening "heapsort.html" will show the result of running the incomplete heap sort
implementation provided by the code stencil:

To complete the heap sort implementation, complete the heap implementation in
heap.js at the locations marked "STENCIL". In addition, the inclusion of heap.js in the
execution of the heap sort will require modification of heapsort.html.

A successful heap sort implementation will show the following result for a randomly
generated set of numbers:

Graph Search Stencil

For the path planning implementation, a JavaScript/HTML5 code stencil has been
provided in the file "search_canvas.html" within the "project_pathplan" subdirectory.
Opening this file in a browser should display an empty 2D world displayed in an
HTML5 canvas element.

http://www.w3schools.com/html/html5_canvas.asp

There are five planning scenes that have been provided within this code stencil:
"empty", "misc", "narrow1", "narrow2", and "three_sections". The choice of
planning_scene can be specified from the URL given to the browser, described in the
usage in the file. For example, the URL "search_canvas.html?
planning_scene=narrow2" will bring up the "narrow2" planning world. Other execution
parameters, such as start and goal location, can also be specified through the
document URL.

This code stencil is implemented to perform graph search iterations interactively in the
browser. The core of the search implementation is performed by the function

iterateGraphSearch(). This function performs a graph search iteration for a single
location in the A-star execution. The browser implementation cannot use a while loop
over search iterations, as in the common A-star implementation. Such a while loop
would keep control within the search function, and cause the browser to become non-
responsive. Instead, the iterateGraphSearch() gives control back to the main
animate() function, which is responsible for updating the display and user interaction.

Within the code stencil, you will complete the functions initSearchGraph() and
iterateGraphSearch() as well as add functions for heap operations. Locations in
"search_canvas.html" where code should be added are labeled with the "STENCIL"
string. In initSearchGraph() creates a 2D array over locations to be searched. Each
element of this array contains various information computed by the search algorithm
for a particular location. iterateGraphSearch() should use three of the provided
functions to perform a search iteration. testCollision() returns a boolean of whether a
given 2D location, as a two-element vector, is in collision with the planning scene.
draw_2D_configuration() draws a square at a given location in the planning world to
indicate that location has been explored. Once the search is complete,
drawHighlightedPathGraph() will render the path produced by the search algorithm
between a given location and the start location. The global variable search_iterate
should be set to false to end animation loop.

Graduate Section Requirement

In addition to the A-star algorithm, students in the graduate section of AutoRob must
additionally implement path planning by Depth-first search, Breadth-first search, and
Greedy best-first search. An additional report, as file "report.html" in the
"project_pathplan" directory, is required that: 1) shows results from executing every
search algorithm with every planning world for various start and goal configurations
and 2) synthesizes these results into coherent findings about these experiments.

For effective communication, it is recommended to think of "report.html" like a short
research paper: motivate the problem, set the value proposition for solving the
problem, describe how your methods can address the problem, and show results the
demonstrate how well these methods realize the value proposition. Visuals are highly
recommended to complement this description. The best research papers can be read

in three ways: once in text, once in figures, and once in equations. It is also incredibly
important to remember that writing in research is about generalizable understanding of
the problem more than a specific technical accomplishment.

ADVANCED EXTENSIONS

Advanced extensions can be submitted anytime before the final grading is complete.
Concepts for several of these extensions will not be covered until later in the
semester. Any new path planning algorithm must be implemented within the file
"search_canvas.html" under the "project_pathplan" directory, and invoked through a
parameter given through the URL. For example, the Bug0 algorithm must be invoked
by adding the argument ?search_alg="Bug0" to the URL. Thus, a valid invocation of
Bug0 for the Narrow2 world could use the URL:

file:///project_pathplan/source_search_canvas.html?planning_scene=narrow2?

search_alg="Bug0"

The same format must be used to invoke any other algorithm (such as Bug1, Bug2,
TangentBug, Wavefront, etc.).

Of the 4 possible advanced extension points, two additional points for this assignment
can be earned by implementing the "Bug0", "Bug1", "Bug2", and "TangentBug"
navigation algorithms. The implementation of these bug algorithms must be contained
within the file "search_canvas.html" under the "project_pathplan" directory.

Of the 4 possible advanced extension points, two additional points for this assignment
can be earned by implementing navigation by "Potential" fields and navigation using
the "Wavefront" algorithm. The implementation of these potential-based navigation
algorithms must be contained within the file "search_canvas.html" under the
"project_pathplan" directory.

Of the 4 possible advanced extension points, one additional point for this assignment
can be earned by implementing a navigation algorithm using a probabilistic roadmap
("PRM"). This roadmap algorithm implementation must be contained within the file
"search_canvas.html" under the "project_pathplan" directory.

Of the 4 possible advanced extension points, one additional point for this assignment
can be earned by implementing costmap functionality using morphological operators.
Based on the computed costmap, the navigation routine would provide path cost in
addition path length for a successful search. The search implementation with this
costmap must be contained within the file "search_canvas_costmap.html" under the
"project_pathplan" directory.

Of the 4 possible advanced extension points, one additional point for this assignment
can be earned by implementing a priority queue through an AVL tree or a red-black
tree. The search implementation with this priority queue must be contained within the
file "search_canvas_balancedtree.html" under the "project_pathplan" directory.

Project Submission

For turning in your assignment, ensure your completed project code has been
committed and pushed to the master branch of your repository.

To ensure proper submission of your assignments, please do the following:

confirm with the course instructor (ocj addrsign umich) with your name, email
address, and pointer to your repository,

ensure the instructor has push/admin access to your repository, which can be
confirmed/addressed through email or office hours (or by seeing that the
instructor has committed the file "grading.txt")

If you are paying attention, you should also add a directory to your repository called "me". This "me" directory should include a simple webpage in
the file "me.html". The "me.html" file should have a title with your name, an h1 tag with your name, an img tag includes a picture of you from the file
"me.png", body with a brief introduction about you, and a script tag that prints the result of Array(16).join("wat"-1)+" Batman!" to the console.

Assignment 2: Pendularm

Due 11:59pm, Wednesday, October 2, 2019

Physical simulation is widely used across robotics to test robot controllers. Testing in
simulation has many benefits, such as avoiding the risk of damaging a (likely
expensive) robot and faster development of controllers. Simulation also allows for
consideration of environments not readily available for testing, such as interplanetary

https://en.wikipedia.org/wiki/AVL_tree
https://en.wikipedia.org/wiki/Red%E2%80%93black_tree

exploration (as in the example below for the NASA Space Robotics Challenge). We
will now model and control our first robot, the Pendularm, to achieve an arbitrary
desired setpoint state.

As an introduction to building your own robot simulator, your task is to implement a
physical dynamics and servo controller for a simple 1 degree-of-freedom robot
system. This system is 1 DOF robot arm as a frictionless simple pendulum with a rigid
massless rod and idealized motor. A visualization of the Pendularm system is shown
below. Students in the graduate section will extend this system into a 2-link 2-DOF
robot arm, as an actuated double pendulum.

Space Robotics Challenge HighlightSpace Robotics Challenge Highlight

http://en.wikipedia.org/wiki/Pendulum
https://en.wikipedia.org/wiki/Double_pendulum
https://www.youtube.com/watch?v=vOssEL1xqNs

The code stencil for the Pendularm assignment is available within the "pendularm"
subdirectory of KinEval in the file pendularm1.html.

For physical simulation, you will implement several numerical integrators for a
pendulum with parameters specified in the code stencil. The numerical integrator will
advance the state (angle and velocity) of the pendulum in time given the current
acceleration (generated from the pendulum equation of motion). If implemented
successfully, this ideal pendulum should oscillate about the vertical (where the angle
is zero) and with an amplitude that preserves the initial height of the pendulum bob.

Students enrolled in the undergraduate section will implement numerical integrators
for:

Euler's Method

Velocity Verlet

For motion control, students in both undergraduate and sections will implement a
proportional-integral-derivative controller to control the system's motor to a desired
angle. This PID controller should output control forces integrated into the system's
dynamics. You will need to tune the gains of the PID controller for stable and timely

https://github.com/autorob/kineval-stencil/blob/master/project_pendularm/pendularm1.html
https://github.com/autorob/kineval-stencil/blob/master/project_pendularm/pendularm1.html
http://en.wikipedia.org/wiki/Euler%27s_method
http://en.wikipedia.org/wiki/Verlet_integration#Velocity_Verlet
http://en.wikipedia.org/wiki/PID_controller

motion to the desired angle for pendulum with parameters: length=2.0, mass=2.0,
gravity=9.81.

For user input, you should be able to:

select the choice of integrator using the [0-4] keys (with the "none" integrator as a
default),

toggle the invocation of the servo controller with the 'c' or 'x' key (which is off by
default),

decrement and increment the desired angle of the 1 DOF servoed robot arm
using the 'q' and 'e' keys, and

(for the double pendulum) decrement and increment the desired angle of the
second joint of the arm using the 'w' and 'r' keys, and

momentarily disable the servo controller with 's' key (and allowing the arm to
swing uncontrolled).

Graduate Section Requirement

Students enrolled in the graduate section will implement numerical integrators for:

Euler's Method

Verlet integration

Velocity Verlet

Runge-Kutta 4

to simulate and control both a single pendulum (in "pendulum1.html") and a double
pendulum (by creating "pendulum2.html"). A code stencil update will be provided for
pendularm2. The double pendulum is allowed to have a smaller timestep than the
single pendulum, within reasonable limits. A working visualization for the double
pendularm will look similar to the following:

http://en.wikipedia.org/wiki/Euler%27s_method
https://en.wikipedia.org/wiki/Verlet_integration#Verlet_integration_.28without_velocities.29
http://en.wikipedia.org/wiki/Verlet_integration#Velocity_Verlet
https://en.wikipedia.org/wiki/Runge%E2%80%93Kutta_methods#The_Runge.E2.80.93Kutta_method

ADVANCED EXTENSIONS

Of the 4 possible advanced extension points, one additional point for this assignment
can be earned by generating a random desired setpoint state and using PID control to
your Pendularm to this setpoint. This code must randomly generate a new desired
setpoint and resume PID control once the current setpoint is achieved. A setpoint is
considered achieved if the current state matches the desired state upto 0.01
radians for 2 seconds. The number of setpoints that can be achieved in 60 seconds
must be maintained and reported in the user interface. The invocation of this setpoint
trial must be enabled a user pressing the "t" key in the user interface.

Of the 4 possible advanced extension points, two additional points for this assignment
can be earned by implementing a simulation of a planar cart pole system. This
cartpole system should have joint limits on its prismatic joint and no motor forces
applied to the rotational joint. This cart pole implementation should be contained within
the file "cartpole.html" under the "project_pendularm" directory.

Of the 4 possible advanced extension points, two additional points for this assignment
can be earned by implementing a single pendulum simulator in maximal coordinates
with a spring constraint enforced by Gauss-Seidel optimization. This maximal
coordinate pendulum implementation should be contained within the file
"pendularm1_maximal.html" under the "project_pendularm" directory. An additional

https://github.com/autorob/kineval-stencil/blob/master/project_pendularm/pendularm2.html
https://en.wikipedia.org/wiki/Inverted_pendulum
https://en.wikipedia.org/wiki/Verlet_integration#Constraints

point can be earned by extending this implementation to a cloth simulator in the file
"cloth_pointmass.html".

Project Submission

For turning in your assignment, push your updated code to the master branch in your
repository.

Assignment 3: Forward Kinematics
Due 11:59pm, Wednesday, October 16, 2019

Forward kinematics (FK) forms the core of our ability to purposefully control the
motion of a robot arm. FK will provide us general formulation for controlling any robot
arm to reach a desired configuration, and execute a desired trajectory. Specifically, FK
allows us to predict the spatial layout of the robot our 3D world given a configuration of
its joints. For the purposes of grasping and dexterous tasks, FK gives us the critical
ability to predict the location of the robot's hand (i.e., endeffector). As shown in our
IROS 2017 video below, such manipulation assumes a robot has already perceived its
environment as scene estimate of objects and their position and orientation. Given this
scene estimate, a robot controller uses FK to evaluate and execute viable endeffector
trajectories for grasping and manipulating an object.

SUM: Sequential Scene Understanding and ManipulationSUM: Sequential Scene Understanding and Manipulation

http://www.iros2017.org/
https://www.youtube.com/watch?v=ry0mqY5I-04

In this assignment, you will render the forward kinematics of an arbitrary robot, given
an arbitrary kinematic specification. A collection of specifications for various robots is
provided in the "robots" subdirectory of the KinEval code stencil. These robots include
the Rethink Robotics' Baxter and Sawyer robots, the Fetch mobile manipulator, and a
variety of example test robots, as shown below. To render the robot properly, you will
compute matrix coordinate frame transforms for each link and joint of the robot based
on the parameters of its hierarchy configuration. The computation of the matrix
transform for each joint and link will allow KinEval's rendering support routines to
properly display the full robot. We will assume the joints will remain in their zero
position, saving joint motion for the next assignment.

Just Starting Mode

kineval_stencil contains a code template for this assignment as well as all future
projects in the course. This KinEval stencil allows for developing the core of a
modeling and control computation stack (forward kinematics, inverse kinematics, and
motion planning) in a modular fashion.

If you open "home.html" in this repository, you should see the disconnected pieces of
a robot bouncing up and down , similar to the snapshot below for "robots/mr2.js"). This
initial mode is the "starting point" state of the stencil to help build familiarity with
JavaScript/HTML5 and KinEval.

Your task is to make these objects in starting point mode responsive to keyboard
commands. Specifically, these objects will move upward, stop/start jittering, move
closer together, and further apart (although more is encouraged). To do this, you will
modify "kineval/kineval_startingpoint.js" at the sections marked with "STENCIL".
These sections also include code examples meant to be a quick (and very rough)
introduction to JavaScript and homogeneous transforms for translation, assuming
programming competency in another language.

Brief KinEval Stencil Overview

Within the KinEval stencil, the functions my_animate() and my_init() in "home.html"
are the principal access points into animation system. my_animate() is particularly
important as it will direct the invocation of functions we develop throughout the
AutoRob course. my_animate() and my_init() are called by the primary process that
maintains the animation loop: kineval.animate() and kineval.init() within

"kineval/kineval.js".

IMPORTANT: "kineval/kineval.js", kineval.animate(), kineval.init(), and any of the
given robot descriptions should not be modified.

For starting point mode, my_animate() will call startingPlaceholderAnimate() and
startingPlaceholderInit(). startingPlaceholderInit() contains JavaScript tutorial-by-
example code that initializes variables for this project. startingPlaceholderAnimate()
contains keyboard handlers and code to update the positioning of each body of the
robot. By modifying the proper variables at the locations labed "STENCIL", this code
will update the transformation matrix for each geometry of the robot (stored in the
".xform" attribute) as a translation in the robot's world. The ".xform" transform for each
robot geometry is then used by kineval.robotDraw() to have the browser render the
robot parts in the appropriate locations.

Forward Kinematics

Assuming proper completion of Just Starting Mode, you are now ready for
implementation of robot forward kinematics. Ensure the following files are included
(within script tags) in your "home.html". You will modify these files for implementing
FK:

"kineval/kineval_robot_init.js" for initializing your robot object based on a given
description object; modification is require to add parent and child references to
each link

"kineval/kineval_forward_kinematics.js" for implementing (a recursive) traversal
over joints and links to compute transforms; traversal of forward kinematics is
invoked from kineval.robotForwardKinematics() within my_animate() in
home.html

"kineval/kineval_matrix.js" for the implementation of your vector and matrix
routines, such as for matrix multiplication, matrix generation, etc. in
kineval_matrix.js

Robot Examples and Initialization

Each file in the "robots" subdirectory contains code to create a robot data object . This
data object is initialized the kinematic description of a robot (as well as some meta
information and rendering geometries). The kinematic description defines a
hierarchical configuration of the robot's links and joints. This description is a subset of
the Unified Robot Description Format (URDF) converted into JSON format. The basic
features of URDF are described in this tutorial.

IMPORTANT (seriously): The given robot description files should NOT be modified.
Code that requires modified robot description files will fail tests used for grading. You
are welcomed and encouraged to create new robot description files for additional
testing.

The selection of file with a robot description can occur directly in the URL for
"home.html". As a default, the "home.html" in the KinEval stencil assumes the "mr2"
robot description in "robots/robot_mr2.js". Another robot description file can be
selected directly in the URL by adding a robot parameter. This parameter is
segmented by a question mark and sets the robot file pointer to a given file local
location, relative to "home.html". For example, a URL with "home.html?
robot=robots/robot_urdf_example.js" will use the URDF example description.

In addition to the given initialization, you should extend the robot object to complete
the kinematic hierarchy to specify the parent and children of each link. This
modification should be made in the kineval.initRobotJoints() function in
"kineval/kineval_robot_init.js". The children array of a link should always be defined,
which would result in an empty array for leaf nodes in the kinematic tree. For the
KinEval user controls to work properly, the children array should be named as the
".children" property of the link.

Note: KinEval refers to links and joints as strings, not pointers, within the robot object.
robot.joints (as well as robot.links) is an array of data objects that are indexed by
strings. Each of these objects stores relevant fields of information about the joint, such
as its transform (".xform"), parent (".parent") and child (".child") in the kinematic
hierarchy, local transform information (".origin"), etc. As such, robot.joints['JointX']
refers to an object for a joint. In contrast, robot.joints['JointX'].child refers to a string
('LinkX'), that can then be used to reference a link object (as robot.links['LinkX']).

http://wiki.ros.org/urdf
http://wiki.ros.org/urdf/Tutorials/Create%20your%20own%20urdf%20file

Similarly, robot.links['LinkX'].parent refers to a joint as a string 'JointX' that can then
then be used to reference a joint object in the robot.joints array.

Invoking Forward Kinematics

The function kineval.robotForwardKinematics() in
"kineval/kineval_forward_kinematics.js" will be the main point of invocation for your FK
implementation. This function is responsible for updating matrix transforms for the
frame of each link and joint with respect to the global world coordinates. The
computed transform for each frame of the robot needs to be stored in the ".xform"
field. For a given link named 'LinkX', this xform field can be accessed as
robot.links['LinkX'].xform. For a given joint named 'JointX', this xform field can be
accessed as robot.joints['JointX'].xform. Once kineval.robotForwardKinematics()
completes, the updated transforms for each frame are used by the function
kineval.robotDraw() in the support code to render the robot.

A matrix stack recursion can be used to compute these global frames, starting from
the base of the robot (specified as a string in robot.base). This recursion should use
local translation and rotation parameters of each joint in relation to its parent link in its
traversal of the hierarchy. For a given joint 'JointX', these translation and rotation
parameters are stored in the robot object as robot.joints['JointX'].origin.xyz and
robot.joints['JointX'].origin.rpy, respectively. The current global translation and rotation
for the base of the robot (robot.base) in the world coordinate frame is stored in
robot.origin.xyz and robot.origin.rpy, respectively.

To run your FK routine, you must toggle out of starting point mode. This toggle can be
done interactively within the GUI menu or by setting kineval.params.just_starting to
false. The code below in "home.html" controls starting point mode invocation, where
single line can be uncommented to use FK mode by default:

// set to starting point mode is true as default
// set to false once starting forward kinematics project
//kineval.params.just_starting = true;

if (kineval.params.just_starting == true) {
 startingPlaceholderAnimate();
 kineval.robotDraw();

 return;
}

The "robots/robot_mr2.js" example should produce the following:

If implemented properly, the "robots/robot_urdf_example.js" example should produce
the following rendering:

The "robots/robot_crawler.js" example should produce the following (shown with joint
axes highlighted):

The "robots/sawyer/sawyer.urdf.js" example should produce the following (shown with
joint axes highlighted):

Interactive Hierarchy Traversal

Additionally, a correct implementation will be able to interactively traverse the
kinematic hierarchically by changing the active joint. The active joint has focus for user
control, which will be used in the next assignment. For now, we are using the active
joint to ensure your kinematic hierarchy is correct. You should be able to move up and
down the kinematic hierarchy with the "k" and "j" keys, respectively. You can also
move between the children of a link using the "h" and "l" keys.

Orienting Joint Rendering Cylinders

The cylinders used as rendering geometries for joints are not aligned with joint axes
by default. The support code in Kineval will properly orient joint rendering cylinders. To
use this functionality, simply implement a vector cross product function named

vector_cross() in your matrix routines. vector_cross() will be automatically detected
and used to properly orient each joint rendering cylinder.

Undergraduate Advanced Extension

Students in the AutoRob Undergraduate Section can earn one additional point by
creating a robot description for the RexArm 4-DOF robot arm, which can be used later
in EECS 467 (Autonomous Robotics Laboratory). Rexarm link geometries are
provided in STL format. RoBob Ross is an example of a RexArm project from 467 in
Winter 2017. Below is a snapshot of a RexArm in KinEval created by mattdr:

Graduate Section Requirement

Students in the AutoRob Graduate Section must: 1) implement the assignment as
described above to work with given examples, which includes the Fetch, Baxter, and

https://www.youtube.com/playlist?list=PLDutmfAv2lfZ9M0XyYfY4N8EwLJhy58G6
https://autorob.org/robot_descriptions/REX%20Arm%20STLs.zip
https://en.wikipedia.org/wiki/STL_%28file_format%29
https://youtu.be/DTD93KXrfZw

Sawyer robot descriptions, and 2) create a new robot description that works with
KinEval.

The files "robots/fetch/fetch.urdf.js" and "robots/baxter/baxter.urdf.js" contain the robot
data object for the Fetch kinematic description. The Fetch robot JavaScript file is
converted from the Fetch URDF description for ROS. A similar process was also done
for the Baxter URDF description.

ROS uses a different default coordinate system than threejs, which needs to be taken
into account in the FK computation. Coordinate frames in ROS assumes that the Z, X,
and Y axes correspond to the up, forward, and side directions, respectively. In
contrast, threejs coordinate frames assume the Y, Z, and X correspond to the up,
forward, and side directions. The variable robot.links_geom_imported will be set to
true when geometries have been imported from ROS and set to false when
geometries are defined completely within the robot description file.

A proper implementation for fetch.urdf.js description should produce the following
(shown with joint axes highlighted):

https://github.com/fetchrobotics/fetch_ros/blob/indigo-devel/fetch_description/robots/fetch.urdf
https://github.com/RethinkRobotics/baxter_common/tree/master/baxter_description/urdf

The newly created robot description should be placed in the "robots" directory with a
filename with your username in the format "robot_uniqueid.js" if no external
geometries are used for this robot (similar to the MR2 or Crawler robots). If external
geometries are imported (similar to the Fetch and Baxter), the robot description should
be in a new subdirectory with the robot's name. The robot's name should also be used
to name the URDF file, such as "robots/newrobotname/newrobotname.urdf.js". It is
requested that geometries for a new robot go into this directory as a "meshes"
subdirectory, such as "robots/newrobotname/meshes". Guidance can be provided
during office hours about creating or converting URDF-based robot description files to
KinEval-compliant JavaScript and importing Collada, STL, and Wavefront OBJ
geometry files.

Students are highly encouraged to port URDF descriptions of real world robot
platforms into their code. Such examples of real world robot systems include the
Kinova Movo, NASA Valkyrie and Robonaut 2, Boston Dynamics Atlas, Universal
Robots UR10, and Willow Garage PR2.

The following KinEval-compatiable robot descriptions were created by students in past
offerings of the AutoRob course. These descriptions are available for your use:

Boston Dynamics Atlas by yeyangf

Agility Robotics Cassie by mungam

NASA Robonaut 2 by nikhita

Human Support Robot by sajanptl

KUKA Lightweight Arm by nmtvijay

R2D2-like robot by eeyan

Universal Robots UR10 by chengyah

Wall-E-like robot by sarahcc

ADVANCED EXTENSIONS

https://github.com/Kinovarobotics/kinova-movo/tree/master/movo_common/movo_description
https://github.com/gkjohnson/nasa-urdf-robots/tree/master/val_description/model
https://github.com/gkjohnson/nasa-urdf-robots/tree/master/r2_description
https://github.com/team-vigir/vigir_atlas_common/tree/master/atlas_description
https://github.com/ros-industrial/universal_robot/tree/kinetic-devel/ur_description
https://github.com/PR2/pr2_common/tree/indigo-devel/pr2_description
https://autorob.org/robot_descriptions/atlas_yeyangf.zip
https://autorob.org/robot_descriptions/cassie_mungam.zip
https://autorob.org/robot_descriptions/robonaut2_nikhita.zip
https://autorob.org/robot_descriptions/hsr_sajanptl.zip
https://autorob.org/robot_descriptions/kuka_lbr_iiwa_nmtvijay.zip
https://autorob.org/robot_descriptions/r2d2_eeyan.js
https://autorob.org/robot_descriptions/UR10_chengyah.zip
https://autorob.org/robot_descriptions/walle_sarahcc.zip

Of the 4 possible advanced extension points, two additional points for this assignment
can be earned by generate a proper Denavit-Hartenberg table for the kinematics of
the Fetch robot. This table should be placed in the "robots/fetch" directory in the file
"fetchDH.txt".

Of the 4 possible advanced extension points, three additional points for this
assignment can be earned by implementing LU decomposition (with pivoting) routines
for matrix inversion and solving linear systems. These functions should be named
"matrix_inverse" and "linear_solve" and placed within the file containing your matrix
routines.

Of the 4 possible advanced extension points, three additional points for this
assignment can be earned by implementing rigid body transformations as dual
quaternions (Kenwright 2012), in addition to the products of exponentials method
described in class. Use of dual quaternion transformations must be selectable from
the KinEval user interface.

Project Submission

For turning in your assignment, push your updated code to the master branch in your
repository.

Assignment 4: Robot FSM Dance Contest
Due 11:59pm, Wednesday, October 30, 2019

Executing choreographed motion is the most common use of current robots. Robot
choreography is predominantly expressed as a sequence of setpoints (or desired
states) for the robot to achieve in its motion execution. This form of robot control can
be found among a variety of scenarios, such as robot dancing (video below), GPS
navigation of autonomous drones, and automated manufacturing. General to these
robot choreography scenarios is a given setpoint controller (such as our PID controller
from Pendularm) and a sequence controller (which we will now create).

For this assignment, you will build your own robot choreography system. This
choreography system enable a robot to execute a dance routine by adding motor
rotation to its joints and creating a Finite State Machine (FSM) controller over pose
setpoints. Your FK implementation will be extended to consider angular rotation about
each joint axis using quaternions for axis-angle rotation. The positioning of each joint
with respect to a given pose setpoint will be controlled by an simple P servo
implementation (based on the Pendularm assignment). You will implement an FSM
controller to update the current pose setpoint based on the robot's current state and
predetermined sequence of setpoints. For a single robot, you will choreograph a
dance for the robot by creating an FSM with your design of pose setpoints and an
execution sequence.

This controller for the "mr2" example robot was a poor attempt at robot Saturday Night
Fever (please do better):

NAO Robots Thriller DanceNAO Robots Thriller Dance

https://www.youtube.com/watch?v=roBWj9YPKPo
https://www.youtube.com/watch?v=n8-SSwKMGnY

This updated dance controller for the Fetch robot is a bit better, but still very far from
optimal:

Assuming proper completion of Assignment 4, ensure the following files are included
(within script tags) in your "home.html". You will modify these files for implementing
axis-angle rotation, the pose setpoint controller, and the FSM controller:

"kineval/kineval_quaternion.js" for your implementation of quaternions for axis-
angle rotation in 3D

AutoRob: FSM Saturday Night Fever (sort AutoRob: FSM Saturday Night Fever (sort ……

https://autorob.org/asgn4_joint_rotation.png
https://www.youtube.com/embed/WyQ9aoB3bpI
https://www.youtube.com/watch?v=WyQ9aoB3bpI

"kineval/kineval_forward_kinematics.js" to augment your existing kinematic
traversal to account for axis-angle joint rotation

"kineval/kineval_controls.js" includes function kineval.applyControls() to apply a
control update to the robot's base and angle of each joint, as well as updating the
camera position; this update just does an addition and does not consider a
physical model of dynamics

"kineval/kineval_servo_control.js" for your implementation of a P servo controller
and an FSM pose sequencer

Joint Axis Rotation and Interactive Control

Each joint of the robot needs several additional properties for joint rotation and control.
These joint properties for the current angle rotation (".angle"), applied control
(".control"), and servo parameters (".servo") have already been created within the
function kineval.initRobotJoints(). The joint's angle will be used to calculate a rotation
about the joints (normal) axis of rotation vector, specified in the ".axis" field. The 3D
rotation due to joint movement should be accounted for in the robot's forward
kinematics and implemented as quaternions in "kineval/kineval_quaternion.js".

If joint axis rotation is implemented correctly, you should be able to use the 'u' and 'i'
keys to move the currently active joint. These keys respectively decrement and
increment the ".control" field of the active joint. Through the function
kineval.applyControls(), this control value effectively adds an angular displacement to
the joint angle.

Interactive Base Movement Controls

The user interfaces also enables controlling the global position and orientation of the
robot base. In addition to joint updates, the system update function
kineval.applyControls() also updates the base state (in robot.origin) with respect to its
controls (specified in robot.controls). With the support function
kineval.handleUserInput(), the 'wasd' keys are purposed to move the robot on the
ground plane with 'q' and 'e' keys for lateral base movement. In order for these keys to
behave properly, the heading and lateral directions of the robot base are needed such

that they respectively express coordinates along local z-axis and x-axis of the base in
the global frame. These vectors need to be computed within your FK implementation
and stored within two global variables: robot_heading and robot_lateral. Each of these
variables should be a homogeneous 3D vector stored as a 2D array.

If robot_heading and robot_lateral are implemented properly, the robot should now be
interactively controllable in the ground plane.

Pose Setpoint Controller

Once joint axis rotation is implemented, you will implement proportional setpoint
controller for the robot joints in function kineval.robotArmControllerSetpoint() within
"kineval/kineval_servo_controller.js". This setpoint controller uses the current angle
(".angle"), desired angle, and servo gains (specified in the ".servo" object) of each
joint to output a control (".control") for the joint. The desired angle for a joint 'JointX' is
stored in kineval.params.setpoint_target['JointX'] as a scalar. All of these joint object
properties are initialized in the function kineval.initRobotJoints() in
"kineval/kineval_robot_init.js".

For testing, a "clock movement" controller has been provided as the function
setpointClockMovement() in "kineval/kineval_setpoint_controller.js". This function can
be invoked by holding down the 'c' key or from the UI. This controller goes well with
this song.

The robot can servo to the current pose setpoint by holding down the 'o' key or
selecting 'persist_pd' from the UI. Pressing the '0' key sets the current setpoint to the
zero pose, where all joint angles are zero. Stored in kineval.setpoints, up to 9 other
arbitrary pose setpoints can be stored by KinEval for pose control. The current robot
pose can be interactively stored by pressing "Shift+number_key" (e.g., "Shift+1"). The
current setpoint can be assigned a stored pose by pressing one of the non-zero
number keys [1-9]. At any time, the currently stored setpoints can be output to the
console as JavaScript code using the JSON.stringify function for the setpoint object,
as the statement "JSON.stringify(kineval.setpoints);". This setpoint array can be
included in your code as part of your dance controller.

FSM Controller

https://www.youtube.com/watch?v=_JPa3BNi6l4

Once your pose setpoint controller is work, a FSM controller should be implemented in
the function kineval.setpointDanceSequence() in "kineval/kineval_setpoint_control.js".
The reference implementation uses pose setpoints initialized and stored in
kineval.setpoints with a sequence of indices stored in
kineval.params.dance_sequence_index and playback index stored in
kineval.params.dance_pose_index. If this convention is not used, the following line in
"kineval/kineval_userinput.js" will require modification:

if (kineval.params.update_pd_dance)
 textbar.innerHTML += "executing dance routine, pose " +
kineval.params.dance_pose_index + " of " +
kineval.params.dance_sequence_index.length;

Graduate Section Requirement

Students in the graduate section of AutoRob must implement the assignment as
described above for the Fetch and Baxter robots with two additional requirements: 1)
proper enforcement of joint types and limits for the robot description, and 2)
integration (via rosbridge) of their code with ROS or a Gazebo simulation of the Fetch.

The URDF JS files for these robots, included in the provided code stencil, contains
joints with with various types that correspond to different types of motion:

continuous: rotation about the joint axis with no joint limits

revolute: rotation about the joint axis with joint limits

prismatic: translation along the joint axis with joint limits

fixed: no motion of the joint

Joints are considered to be continuous as the default. Joints with undefined motion
types must be treated as continuous joints.

Your code can interface with any robot (or simulated robot) running rosbridge/ROS
using the function kineval.rosbridge() in "kineval/kineval_rosbridge.js". This code
requires that the rosbridge_server package is running in a ROS run-time environment
and listening on a websocket port, such as for ws://fetch7:9090. If your FK

http://wiki.ros.org/rosbridge_suite
http://docs.fetchrobotics.com/gazebo.html

implementation is working properly, the model of your robot in the browser will update
along with the motion of the robot based on the topic subscription and callback. This
functionality works seamlessly between real and simulated robots. Although this will
not be done for this class, to control the robot arm, a rosbridge publisher must be
written to update the ROS topic "/arm_controller/follow_joint_trajectory/goal" with a
message of type "control_msgs/FollowJointTrajectoryActionGoal".

Machines running rosbridge, ROS, and Gazebo for the Fetch will be available during
special sessions of the class. Students are encouraged to install and run the Fetch
simulator on their own machines based on this tutorial.

ADVANCED EXTENSIONS

Of the 4 possible advanced extension points, one additional point for this assignment
can be earned by adding the capability of displaying laser scans from a real or
simulated Fetch robot.

Of the 4 possible advanced extension points, four additional points for this assignment
can be earned by adding the capability of displaying 3D point clouds from a real or
simulated Fetch robot and computing surface normals about each point.

Of the 4 possible advanced extension points, four additional points for this assignment
can be earned by implementing dynamical simulation through the recursive Newton-
Euler algorithm (Spong Ch.7). This dynamical simulation update be implemented as
function kineval.updateDynamicsNewtonEuler() in the file "kineval/kineval_controls.js".
In "home.html", the call to kineval.updateDynamicsNewtonEuler() should replace the
call purely kinematic update in kineval.applyControls().

Project Submission

For turning in your assignment, push your updated code to the master branch in your
repository.

Assignment 5: Inverse Kinematics

Due 11:59pm, Friday, November 15, 2019

http://docs.fetchrobotics.com/gazebo.html
http://robotics.usc.edu/~aatrash/cs545/CS545_lecture_11_new.pdf

Although effective, robot choreography in configuration space is super tedious and
inefficient. This difficulty is primarily due to posing each joint of the robot at each
setpoint. Further, changing one joint often requires updating several other joints due to
the nature of kinematic dependencies. Inverse kinematics (IK) offers a much easier
and efficient alternative. With IK implemented, we only need to pose the endeffector in
a common workspace, and the states of the joints in configuration space automatically
inferred. IK is also important when we are about the "tool tip" of an instrument being
used by a robot. One such example is a robot using marker to draw a picture, such as
in the PR2 Portrait Bot Project below:

For this assignment, you will now control your robot to reach to a given point in space
through inverse kinematics for position control of the robot endeffector. Inverse
kinematics will be implemented through gradient descent optimization with both the
Jacobian Transpose and Jacobian Pseudoinverse methods, although only one will be
invoked at run-time.

PR2 Portrait Bot ProjectPR2 Portrait Bot Project

https://www.youtube.com/watch?v=qVS7oylkTwY

As shown in the video below, if successful, your robot will be able to continually place
its endeffector (indicated by the blue cube) exactly on the reachable target location
(indicated by the green cube), regardless of the robot's specific configuration:

The core of this assignment is to complete the kineval.iterateIK() function in the file
kineval/kineval_inverse_kinematics.js. This function is invoked within the function

AutoRob: Inverse Kinematics DemonstratAutoRob: Inverse Kinematics Demonstrat……

https://www.youtube.com/watch?v=ag0j8HzFRzc

kineval.inverseKinematics() with three arguments:

endeffector_target_world: an object with two fields with the target endeffector
position (as a 3D homogeneous vector) and orientation (as Euler angles) in the
world frame

endeffector_joint: the name of the joint directly connected to the endeffector

endeffector_position_local: the location of the endeffector in the local joint frame

From these arguments and the current robot configuration, the kineval.iterateIK()
function will compute controls for each joint. Upon update of the joints, these controls
will move the configuration and endeffector of the robot closer to the target.

kineval.iterateIK() should also respect global parameters for using the Jacobian
pseudoinverse (through boolean parameter kineval.params.ik_pseudoinverse) and
step length of the IK iteration (through real-valued parameter
kineval.params.ik_steplength). Kineval also maintains the current endeffector target
information in the kineval.params.ik_target parameter.

IK iterations can be invoked through the user interface by holding down the 'p' key.
Further, the 'r'/'f' keys will move the target location up/down. When performing IK
iterations, the endeffector and its target pose will be rendered as cube geometries in
blue and green, respectively.

In implementing this IK routine, please remember the following:

Computation of the Jacobian need only to occur with respect to the joints along
the chain from the endeffector joint to the robot base

The location of the endeffector needs to be computed using transforms resulting
from the robot's forward kinematics

Matrix inversion can be invoked by using the provided routine numeric.inv(mat),
available through numericjs

http://www.numericjs.com/

The computed velocity in configuration space should be applied to the robot
through the joint.controls field of each joint

Students enrolled in EECS 398 will implement inverse kinematics for only the position
of the endeffector.

IK Random Trial

All students in the AutoRob course are expected to run their IK controller with the
random trial feature in the KinEval stencil. The IK random trial is executed through the
function kineval.randomizeIKtrial() in the file "kineval/kineval_inverse_kinematics.js".
This function is incomplete in the provided stencil. Code for this function to properly
run the random trial will be made available upon request through the course
discussion channel.

UNDERGRADUATE ADVANCED EXTENSION

Students in the AutoRob Undergraduate Section can earn one additional point by
implementing a closed-form inverse kinematics solution for the RexArm 4-DOF robot
arm, which can be used later projects in EECS 467 (Autonomous Robotics
Laboratory).

Graduate Section Requirement

Students enrolled in the graduate section of AutoRob will implement inverse
kinematics for both the position and orientation of the endeffector, namely for the
Fetch robot. The default IK behavior will be for endeffector position control. Both
endeffector position and orientation are controlled when the boolean parameter
kineval.params.ik_orientation_included is set to true.

ADVANCED EXTENSIONS

Of the 4 possible advanced extension points, one additional point for this assignment
can be earned by reaching to 100 targets in a random trial within 60 seconds. A video
of this execution must be provided to demonstrate this achievement. This video file
should be in the repository root directory with the name "IK100in60" and appropriate
file extension.

https://www.youtube.com/playlist?list=PLDutmfAv2lfZ9M0XyYfY4N8EwLJhy58G6

Of the 4 possible advanced extension points, three additional points for this
assignment can be earned by implementing the Cyclic Coordinate Descent (CCD)
inverse kinematics algorithm by Wang and Chen (1991). This function should be
implemented in the file "kineval/kineval_inverse_kinematics.js" as another option
within the function kineval.iterateIK().

Of the 4 possible advanced extension points, three additional points for this
assignment can be earned by implementing downhill simplex optimization to perform
inverse kinematics. This function should be implemented in the file
"kineval/kineval_inverse_kinematics.js" as another option within the function
kineval.iterateIK().

Of the 4 possible advanced extension points, four additional points for this assignment
can be earned by implementing resolved-rate inverse kinematics with null space
constraints to respect joint limits. This function should be implemented in the file
"kineval/kineval_inverse_kinematics.js" as another option within the function
kineval.iterateIK().

Of the 4 possible advanced extension points, four additional points for this assignment
can be earned by extending your IK controller to use potential fields to avoid
collisions.

Project Submission

For turning in your assignment, ensure your completed project code has been
committed and pushed to the master branch of your repository.

Assignment 6: Motion Planning

Due 11:59pm, Friday, December 6, 2019

Our last programming project for AutoRob returns to search algorithms for generating
navigation setpoints, but now for a high-dimensional robot arm. The A-star graph
search algorithm in Project 1 is a good fit for path planning given the space to explore
is limited to two degrees-of-freedom for a robot base. However, as the number of

http://ieeexplore.ieee.org/document/86079/
https://en.wikipedia.org/wiki/Nelder%E2%80%93Mead_method

degree-of-freedom of our robot increases, our search complexity will grow
exponentially towards intractability. For such high-dimensional search problems, we
now look to sampling-based search algorithms. These sampling-based algorithms
trade off the guarantees and optimality of exhaustive graph search for viably tractable
planning in complex environments. The example below shows one example of
sample-based planning navigating to move a rod through a narrow passageway:

and such planning is also used in simple tabletop scenarios:

For this assignment, you will now implement a collision-free motion planner to enable
your robot to navigate from a random configuration in the world to its home

Manipulation with sampling based motion planningManipulation with sampling based motion planning

Asypmotically-optimal Path Planning for Manipulation (IROAsypmotically-optimal Path Planning for Manipulation (IRO……

https://www.youtube.com/watch?v=BPelkdxt1iU
https://www.youtube.com/watch?v=ag-txw4KUgo

configuration (or "zero configuration"). This home configuration is where every robot
DOF has a zero value. For planning, configuration space includes the state of each
joint and the global orientation and position of the robot base. Thus, the robot must
move to its original state at the origin of the world. Motion planning will be
implemented through the RRT-Connect algorithm (described by Kuffner and LaValle).

The graduate section will additionally implement the RRT-Star (alternate paper link via
IEEE) motion planner of Karaman et al. (ICRA 2011).

The core of this assignment is to complete the robot_rrt_planner_init() and
robot_rrt_planner_iterate() in the provided kineval_rrt_connect.js stencil. For
successful execution, your implementation of RRT-Connect, the provided collision
detection system, and a single specification of world geometry has been included in
home.html:

< script src="kineval_rrt_connect.js" ></script>
< script src="kineval_collision.js" ></script>
< script src="worlds/world_basic.js" ></script>

https://personalrobotics.ri.cmu.edu/files/courses/papers/Kuffner00-rrtconnect.pdf
http://dspace.mit.edu/openaccess-disseminate/1721.1/63170
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=5980479

The code stencil will automatically load a default world. A world can also be specified
as an appended parameter within the URL, in the form of "?
world=worlds/world_name.js". The result of including a world file are the global objects
"robot_boundary" descrbing the min and max values of the world boundaries along
the X, Y, and Z axes and "robot_obstacles" as the locations and radii of sphere
obstacles. To ensure these worlds rendered in the display and available for collision
detection, the geometries of the world are included through the provided call to
kineval.initWorldPlanningScene() in kineval/kineval.js.

Note: your planner should be constrained such that the search does not consider
configurations where the base is outside the X-Z plane. Specifically, the base should
not translate along the Y axis, and should not rotate about the X and Z axes.

First step: add collision detection

Your RRT-Connect implementation will depend on detection of collisions (provided by
the function kineval.robotIsCollision() in kineval_collision.js) with respect to a specified
world geometry. Worlds are specified as a rectangular boundary and sphere
obstacles. A collection of worlds are provided in the "worlds/" subdirectory of
kineval_stencil. The collision detection system performs two forms of tests: 1) testing
of the base position of the robot against the rectangular extents of the world, which is
provided by default, and 2) testing of link geometries for a robot configuration against
spherical objects, which depends on code you will write. Collision testing for links in a
configuration is performed by AABB/Sphere tests that require the bounding box of
each link's geometry in the coordinates of that link. This bounding box is computed by
the following within the loop inside kineval.initRobotLinksGeoms() in kineval.js:

 // bounding box of robot link in local link coordinates
 robot.links[x].bbox = new THREE.Box3;
 robot.links[x].bbox =
 robot.links[x].bbox.setFromObject(robot.links[x].geom);

Even before your planner is implemented, you can use the collision system
interactively with your robot. The provided kineval.robotIsCollision() function will test
the current configuration of the robot. When the robot is detected to be in collision,

one of the colliding links will be highlighted with a red wireframe. There could be many
links in collision, but only one will be highlighted.

The call to kineval.robotIsCollision() has been placed within my_animate() in
home.html:

 // show if robot is currently in collision
 kineval.robotIsCollision();

Updating kineval_collision for your implementation

To complete the collision system, you will need to modify the forward kinematics calls
in kineval/kineval_collision.js. Specifically, you will need to perform a traversal of the
forward kinematics of the robot for an arbitrary robot configuration within the function
kineval.poseIsCollision(). kineval.poseIsCollision() takes in a vector in the robot's
configuration space and returns either a boolean false for no detected collision or a
string with the name of a link that is in collision. As a default, this function performs
base collision detection against the extents of the world. For collision detection of
each link, this function will make a call to function that you create called
robot_collision_forward_kinematics() to recursively test for collisions along each link.
Your collision FK recursion should use the link collision function, collision_FK_link(),
provided below along with a joint traversal function properly positions the link and joint
frames for the given configuration.

function collision_FK_link(link,mstack,q) {

 // this function is part of an FK recursion to test each link
 // for collisions, along with a joint traversal function for

 // the input robot configuration q
 //
 // this function returns the name of a robot link in collision
 // or false if all its kinematic descendants are not in collision

 // test collision by transforming obstacles in world to link space
 mstack_inv = numeric.inv(mstack);
 // (alternatively) mstack_inv = matrix_invert_affine(mstack);

 var i; var j;

 // test each obstacle against link bbox geometry
 // by transforming obstacle into link frame and
 // testing against axis aligned bounding box
 for (j in robot_obstacles) {

 var obstacle_local =
 matrix_multiply(mstack_inv,robot_obstacles[j].location);

 // assume link is in collision as default
 var in_collision = true;

 // return false if no collision is detected such that
 // obstacle lies outside the link extents
 // along any dimension of its bounding box
 if (
 (obstacle_local[0][0]<
 (link.bbox.min.x-robot_obstacles[j].radius)
)
 ||
 (obstacle_local[0][0]>
 (link.bbox.max.x+robot_obstacles[j].radius)
)
)
 in_collision = false;

 if (
 (obstacle_local[1][0]<
 (link.bbox.min.y-robot_obstacles[j].radius)
)
 ||
 (obstacle_local[1][0]>
 (link.bbox.max.y+robot_obstacles[j].radius)
)
)
 in_collision = false;

 if (
 (obstacle_local[2][0]<
 (link.bbox.min.z-robot_obstacles[j].radius)
)

 ||
 (obstacle_local[2][0]>
 (link.bbox.max.z+robot_obstacles[j].radius)
)
)
 in_collision = false;

 // return name of link for detected collision if
 // obstacle lies within the link extents
 // along all dimensions of its bounding box
 if (in_collision)
 return link.name;
 }

 // recurse child joints for collisions,
 // returning name of descendant link in collision
 // or false if all descendants are not in collision
 if (typeof link.children !== 'undefined') {
 var local_collision;
 for (i in link.children) {
 // STUDENT: create this joint FK traversal function
 local_collision =
 collision_FK_joint(robot.joints[link.children[i]],mstack,q)
 if (local_collision)
 return local_collision;
 }
 }

 // return false, when no collision detected for this link and children
 return false;
}

kineval_collision.js uses matrix and quaternion calls based on the reference
implementation (i.e., the instrutor's code). Your matrix and quaternion calls likely have
a different structure to the function arguments and returned data structures. You
should either:

modify calls to matrix/quaternion routines to fit your functions, or

use a modified version of your own FK with the collision test added to the link
traversal function (remember: you need the inverse of the matrix stack for
collision testing in a link frame)

You can feel free to implement matrix_invert_affine() instead of using numeric.inv().
Affine transforms can be inverted (in constant time, Quiz 3!) through a much simpler

process than the generic matrix inversion, which is O(n^3) for Gaussian elimination.

If successful to this point, you should be able to see the collision world of the robot,
move around this world, and see the colliding link display a red wireframe when a
collision occurs.

Implementing and invoking the planner

Your motion planner will be implemented in the file kineval/kineval_rrt_connect.js
through the functions kineval.robotRRTPlannerInit() and robot_rrt_planner_iterate().
The kineval.robotRRTPlannerInit() function should be modified to initialize the RRT
trees and other necessary variables. The robot_rrt_planner_iterate() function should
be modified to perform a single RRT-Connect iteration based on the current RRT
trees. Basic RRT tree support functions are provided for initialization, adding
configuration vertices (which renders "breadcrumb" indicators of base positions
explored), and adding graph edges between configuration vertices. This function
should not use a for loop to perform multiple planning iterations, as this will cause the
browser to block and become unresponsive. Instead, the planner will be continually
called asynchronously by the code stencil until a motion plan solution is found.

Once implemented, your planner will be invoked interactively by first moving the robot
to an arbitrary non-colliding configuration in the world and then pressing the "m" key.
The "m" key will request the generation of a motion plan. While the planner is working,
it will not accept new planning requests. Thus, you can move the robot around while
the planner is executing.

Planner output

The output of your planner will be a motion path in a sequentially ordered array
(named kineval.motion_plan[]) of RRT vertices. Each element of this array contains a
reference to an RRT vertex with a robot configuration (.vertex), an array of edges
(.edges), and a threejs indicator geometry (.geom). Once a viable motion plan is
found, this path can be highlighted by changing the color of the RRT vertex
"breadcrumb" geom indicators. The color of any configuration breadcrumb indicator in
a tree can be modified, such as in the following example for red:

 tree.vertices[i].geom.material.color = {r:1,g:0,b:0};

The user should should be able to interactively move the robot through the found plan.
Stencil code in user_input() within kineval_userinput.js will enable the "n" and "b" keys
to move the robot to the next and previous configuration in the found path,
respectively. These user key presses will respectively increment and decrement the
parameter kineval.motion_plan_traversal_index such that the robot's current
configuration will become:

 kineval.motion_plan[kineval.motion_plan_traversal_index]

Note: we are NOT using robot.controls to execute the found path of the robot.
Although this can be done, the collision system does not currently test for
configurations that occur due to the motion between configurations.

Testing

Make sure to test all provided robot descriptions from a reasonable set of initial
configurations within all of the provided worlds, ensuring that:

a valid non-colliding path is found and can be traversed,

the robot does not to take steps longer than 1 unit,

the robot base does not move outside the X-Z plane. Specifically, the base
should not translate along the Y axis, and should not rotate about the X and Z
axes.

Graduate Section Requirement

In addition to the requirements above, students in the graduate section must also
implement the RRT-Star motion planning algorithm and test to ensure:

joint limits for the different joint types are respected, and

the "fetch" robot should be able to navigate all of the provided worlds.

ADVANCED EXTENSION

Of the 4 possible advanced extension points, one additional point for this assignment
can be earned by adding the capability of motion planning to an arbitrary robot
configuration goal.

Of the 4 possible advanced extension points, two additional points for this assignment
can be earned by using the A-star algorithm for base path planning in combination
with RRT-Connect for arm motion planning.

Of the 4 possible advanced extension points, one additional point for this assignment
can be earned by writing a collision detection system for two arbitrary triangles in 2D
using a JavaScript/HTML5 canvas element.

Of the 4 possible advanced extension points, two additional points for this assignment
can be earned by writing a collision detection system for two arbitrary triangles in 3D
using JavaScript/HTML5 and threejs or a canvas element.

Of the 4 possible advanced extension points, four additional points for this assignment
can be earned by implementation of triangle-triangle tests for collision detection
between robot and planning scene meshes.

http://dspace.mit.edu/openaccess-disseminate/1721.1/63170

Of the 4 possible advanced extension points, three additional points for this
assignment can be earned by implementation of cubic or quintic polynomial
interpolation (Spong Ch. 5.5.1 and 5.5.2) across configurations returned in a
computed motion plan.

Of the 4 possible advanced extension points, four additional points for this assignment
can be earned by implementing an approved research paper describing a motion
planning algorithm.

Warning: Respect configuration space

The planner should produce a collision-free path in configuration space (over all robot
DOFs) and not just the movement of the base on the ground plane. If your planner
does not work in configuration space, it is sure to fail tests used for grading.

Highly recommended: start with HTML5 Canvas Stencil

Using the browser for as a development environment has many benefits. However,
when coding mistakes occur, it will make the browser lock up and be completely
unusable. Such mistakes can be especially difficult to debug when the overhead of
rendering with threejs is involved.

To help you get started, the path planning code stencil in the "search_canvas"
directory has entry points for developing your core RRT routines. This stencil will allow
you to implement the RRT-Connect algorithm in simplified 2D worlds with provided
routines for visualization and collision. Because the RRT is invariant across
configuration spaces, an RRT developed for the 2D Canvas world should easily port
to the N-D threejs world, with minor changes for invoking drawing routines.

Project Submission

For turning in your assignment, ensure your completed project code has been
committed and pushed to the master branch of your repository.

Assignment 7: The best use of robotics?

Slides due 11:59pm, Friday, December 6, 2019
Presentation due 1:30pm, Monday, December 9, 2019

Scenario: An investor is considering giving you 20 million dollars (cold hard USD cash,
figuratively). This investor has been impressed by your work with KinEval and other
accomplishments while at the University of Michigan. They are convinced you have
the technical ability to make a compelling robot technology... but, they are unsure how
this technology could produce something useful. Your task is to make a convincing
pitch for a robotics project that would yield a high return on investment, as measured
by some metric (financial profit, good for society, creation of new knowledge, etc.).

You will get 2 minutes to make a pitch to develop something useful with robots.
Consider the instructor and your classmates as the people that need to be convinced.
As a guideline, your pitch should address an opportunity (presented by a need or a
problem), your planned result (as a system, technology, product, and/or service), and
how you will measure successful return on investment. Return on investment can be
viewed as financial profit (wrt. venture capital), good for society (wrt. a government
program), creation of new knowledge or capabilities (wrt. a grant for scientific
research). Remember, the purpose is to convince and inspire about what is possible,
rather than dive into specifics.

The last scheduled class period and a little more (December 9, 1:30-4:30pm) will be
dedicated to student presentations to pitch ideas on the best use of robotics.

Please post your slides to the "#asgn7-best-use" discussion channel before 11:59pm
on Friday December 6th. Your first slide must include the title of your presentation,
your name, and your username. The filename of your slides must start with your
username in the format "asgn7_username". Slides will only be accepted in PDF
format, although embedding of videos or links to videos will be accepted. You can post

new versions of your slides up to the submission deadline on December 6th, but must
delete older versions.

The pitch judged to be the most convincing will get first dibs.

Additional MaterialsAdditional Materials

Appendix: Git-ing Started with Git

Using version control effectively is an essential skill for both the AutoRob course and,
more generally, contributing to advanced projects in robotics research and
development. git is arguably the most widely used version control system at current.
Examples of the many robotics projects using git include: Lightweight
Communications and Marshalling, the Robot Operating System, Robot Web Tools,
Fetch Robotics, the NASA Robonaut 2, and the Rethink Baxter. To help you use git
effectively, the course staff has added the tutorials below for getting started with git.
This is meant to be a starting guide to using git version control and the bash command
shell. For a more complete list of commands and features of git, you can refer to the
following guides: The Git Pro book or The Basic git command line reference for
windows users. An interactive tutorial for git is available at LearnGitBranching.

Installing git

The AutoRob course assumes git is used from an command line terminal to work with
a git hosting service, such as GitHub or Bitbucket. Such terminal environments are
readily available in Linux and Mac OSX through their respective terminal programs.
For MS Windows, we are recommending Git Bash, which can be downloaded from the
Git for Windows project. Several other viable alternatives git clients exist, such as the
GUI-based GitKraken.

git can be installed on Linux through a common package managment system, based
on your distribution, with one of the following commands:

https://github.com/lcm-proj
https://github.com/ros
https://github.com/RobotWebTools
https://github.com/fetchrobotics
https://bitbucket.org/nasa_ros_pkg/nasa_r2_simulator
https://github.com/RethinkRobotics
http://git-scm.com/book/en/v2/Getting-Started-Installing-Git
http://www.mathworks.com/help/instrument/using-tcpip-server-sockets.html
http://learngitbranching.js.org/
https://autorob.org/github.com
https://autorob.org/bitbucket.com
https://gitforwindows.org/
https://www.gitkraken.com/

sudo yum install git-all

sudo apt-get install git-all

For Mac OSX, git can be installed on its own using the Git-OSX-Installer or as part of
larger set of Xcode build tools.

If you have a command line terminal running, you should see a shell environment that
looks something like this (screenshot from an older version of Git Bash):

If you have git installed, you should should be able to enter the "git" command and
see the following usage information printed (screenshot from OSX):

https://sourceforge.net/projects/git-osx-installer/
https://en.wikipedia.org/wiki/Xcode

Cloning your repository

The most common thing that you will need to do is pull and push files from and to your
git hosting service. Upon opening Git Bash, you will need to go to the location of both
your GitHub/Bitbucket repository on the web and your git workspace on your local
computer. Our first main step is to clone your remote repository onto your local
computer. Towards this end, the next step is to open your terminal application and
determine your current directory, assuming you will use this directory to create a
workspace. For Linux and OSX, the terminal should start in your home directory, often

"/home/username" or "/Users/username". For Git Bash on Windows, the default home
directory location could be the Documents in your user directory, or the general user
folder within "C:\Users".

From your current directory, you can use Bash commands to view and modify the
contents of directories and files. You can see a list of the files and folders that can be
accessed using ls (list) and change the folder using the command cd (change
directory) as shown below. If you believe that the directory has files in addition to
folders, but would like a list of just the folders, then the command ls –d */ can be used
instead of ls. Below is a quick summary of relevant Bash commands:

"ls" prints a listing of files in the current directory
"pwd" prints the location of the current directory in the filesystem
"cd [NameFolder]" moves the terminal to a new directory in the filesystem
"ls [Expression]" prints a listing of files in the current directory matching the given Expression;
ls r* prints all files starting with the character 'r'
"mkdir [NameFolder]" creates a folder within the current directory. If the folder name has
spaces, then NameFolder will need to be in double quotes.
"rmdir [NameFolder]" removes a specified empty folder. If it is not empty, the folder will not be
removed.
"rm –rf [NameFolder]" removes a specified folder and all the contents
"touch [FileName]" creates a single empty text file
"touch [FIleName1.txt] [FileName2.txt]..." creates multiple empty text files
"rm [FileName]" removes a specific file from the current directory
"rm –i "rm –v [FileName]" removes the file and reports in console

You are now ready to clone a copy of your remote repository and populate it with files
for AutoRob projects. It assumed that you have already created a repository on your
git hosting service, given the course staff access to this repository, and provided a link
of your repository to the course staff. This repository link (in the form of
"https://github.com/user_name/repository_name.git") will now be used to clone a copy
of your remote repository onto your local machine using the following git command
below. This command will clone the repository contents to a subdirectory labeled with
the name of the repository:

 git clone [repository URL link]

This directory should be listed and inspected to ensure it has been cloned with the
contents of the repository, matching the remote repository from your git hosting
service. If this is a new repository, it is not problem for this directory to be empty:

 ls [repository_name]

You can also check for differences between the files on your computer and the remote
repository using git status as shown below. If you receive the message shown in the
example below, then there are no differences. If there are differences, then it will have
the number of files which are different highlighted in red.

$ git status
On branch master
Your branch is up-to-date with 'origin/master'.
nothing to commit, working directory clean

Important: workspace is not the same as repository

You should now have a local copy of your repository with a workspace in a
subdirectory. It is critical to note that your local repository is different than the
subdirectory with your current workspace. Your workspace is not automatically tracked
by the version control system and considered ephemeral. Any changes made to your
workspace must be committed back into the local repository to be recognized by the
version control system. Further, any changes committed to your local repository must
also be pushed remotely to be recognized by your git hosting service. Thus, any
changes made to your workspace can be lost if not committed and pushed, which will
be discussed more in later sections.

Populating your repository with project stencil code

In a separate directory, clone the kineval-stencil repository to a subdirectory on your
local machine:

 cd [home_directory]
 git clone git@github.com:autorob/kineval-stencil.git

Inspect this directory to ensure it has been cloned with the contents of the repository:

 cd kineval-stencil
 ls

and open "home.html" from this directory in a web browser and ensure you see the
starting point picture below:

If your browser throws an error when loading "home.html", one potential cause is that
this browser disallows loading of local files. In such cases, the browser will typically
report a security error in the console. This security issue is avoided by serving the
KinEval files from an HTTP server. Such a HTTP server is commonly available within
distributions for modern operating systems. Assuming Python is installed on your
computer, you can start a HTTP with the following command from your workspace
directory, and then view the page at localhost:8000:

 python -m SimpleHTTPServer

Alternatively, if you have nodejs installed, you can install and start a HTTP with the
following command from your workspace directory, and then view the page at

http://localhost:8000/home.html

localhost:3000:

 npm install simple-server
 node simple-server

Once you are able to load and view "home.html", the next step is to copy the kineval-
stencil files to the directory with your workspace

 cd [home directory]
 cp -r kineval-stencil/* [repository_name]/

IMPORANT: ensure that this copy from kineval-stencil to your repository does not
include the ".git" subdirectory. The ".git" subdirectory is the actual git repository on
your local computer, where as the directory itself is your (ephemeral) workspace
outside of git.

As these copied files are new to your working repository, they need to be added to the
repository to ensure they are tracked for version control. These files are added with
the following commands:

 cd [repository name]
 git add *

Below is a more detailed summary of git commands for adding files from your
workspace to your repository:

"git add" adds changed files to the next commit. There are several different options which can
follow this command.
"git add –A: adds all new files and changes to the next commit including deletions
"git add ." adds all new files and changes to the next commit without deletions
"git add –u" adds all changes to the next commit without new files

Commit and push to update your repository

Whenever you make any significant changes to your repository, these changes should
be committed to your local repository and pushed to your remote repository. Such
changes can involve adding new files or modifying existing files in your local
workspace. For such changes, you will first commit changes from your workspace to
your local repository using the git commit command:

http://localhost:3000/home.html

git commit -a -m "message describing changes"

and then pushing these changes from your local repository to a synced repository on
your git hosting service:

git push

This commit will occur to the "master" branch of your repository.

Note: the change files must be located in the correct repository folder on your local
computer and these commands should be performed in the local workspace directory.
Below is a more detailed summary of git commands for adding files from your
workspace to your repository:

"git commit" commits files with changes. There are several options that can follow this. The
message text is required and is good practice to list changes that you have made. GitHub is
good at tracking changes.
"git commit [FileName] -m 'Message'" commits changes to a specific file
"git commit –a “Message'" commits all files changed since last commit
"git commit –a –m “Message'" commits all files changed since last commit but not new files
"git push" pushes the committed changes to remote repository

Once you have committed and pushed, your local workspace becomes redundant as
your changes have been stored and tracked remotely. The local workspace can now
be deleted without concern. This local workspace can also be updated with changes
to the remote repository by pulling.

Pulling remote changes

Changes be made to your remote repository, potentially by other collaborators, without
being tracked by your local repository. This can lead to potential versioning conflicts
when committed changes contradict each other. For the AutoRob course, versioning
conflicts should not be a problem because commits to your repository should be yours
alone. That said, one good practice is to ensure your workspace, local repository, and
remote repository are synced before making any changes. A brute force method for
doing this is to re-clone your repository each time you begin to make changes.
Another option is to pull remote changes into your local repository and workspace
using the git pull command (or git fetch command):

cd [repository_name]
git pull

Below is a more detailed summary of git commands for pulling and fetching:

"git pull [RemoteName]" is used for retrieving commits and merging the files to what is
already on the computer. This may make changes to the files that are already there;
effectively, this is a fetch followed by a merge. If you need to pull directly from the repository
which already exists and has been accessed through the change directory command, then
you do not list a [RemoteName].
"git fetch " used for retrieving commits from a repository that does not already exist on the
user’s computer. This creates an exact copy of the files to your local repository and not to the
workspace.

Branching

Branching is an effective mechanism for work in a repository to be done in parallel
with changes merged at a later point. A branch essentially creates a copy of your work
at a particular version. Branches are independently tracked by the version controller
and can be merged together when requested (which collaboratively results in a "pull
request"). The larger story for branching and merging is outside the scope of
AutoRob.

The working version of your code, which you submit for grading, is expected to be in
the "master" branch of your repository. When working on a new assignment, it is
recommend that you create a branch for this new work. This allows your stable code
in the master branch to be undisturbed while you continue to modify your code. Once
your work for this assignment is done, you can then update your master by merging in
your assignment branch. Stylistically, it is helpful to use the name Assignment-X for
your assignment branch for Project number X.

The simplest means for branching in this context is to use the branching feature from
the webpage of your remote repository. From GitHub, simply select the master branch
from the "Branch: " button and enter the name of the branch to be created. From
Bitbucket, select the "Branches" icon from the left hand toolbar and follow the
instructions for branch creation. If successful, you should see a list of branches that
can each be inspected for their respective contents. Branches can also be deleted
from this interface.

A branch can also be created from the command line by the following, which will
create a copy of the current branch:

git branch [branch_name]

You can switch between branches with the following command:

git checkout [branch_name]

as well as clone a specific branch from a repository:

git clone -b [branch_name] [repository URL link]

Good luck and happy hacking!

	1.14.20 Meeting Minutes
	1.14.20 Agenda

